Loading…
Preparation, Structure, and Properties of Modified Asphalt with Waste Packaging Polypropylene and Organic Rectorite
The modified asphalt with waste packaging polypropylene (WPP) and WPP/organic rectorite (OREC) was prepared by the melt blending method. The effects of OREC on the physical and aging properties of WPP-modified asphalt were studied. The morphologies, microstructure, and thermal properties of WPP-modi...
Saved in:
Published in: | Advances in materials science and engineering 2019-01, Vol.2019 (2019), p.1-9 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The modified asphalt with waste packaging polypropylene (WPP) and WPP/organic rectorite (OREC) was prepared by the melt blending method. The effects of OREC on the physical and aging properties of WPP-modified asphalt were studied. The morphologies, microstructure, and thermal properties of WPP-modified asphalt and WPP/OREC-modified asphalt were characterized by fluorescence microscopy, Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and thermogravimetry (TG). The results show that the composite-modified asphalt exhibits excellent ductility and plasticity when the contents of WPP and OREC are 4 wt. % and 1.5 wt. %, respectively. The deformation ability, softening point, ductility, and high-temperature storage stability of WPP-modified asphalt can be improved by adding the appropriate content of OREC. It is demonstrated that the composite-modified asphalt has an outstanding operational performance when the content of OREC is in the range of 1.5–2 wt. %. Compared with base asphalt, the high temperature performance of WPP-modified asphalt and WPP/OREC-modified asphalt is also improved significantly. |
---|---|
ISSN: | 1687-8434 1687-8442 |
DOI: | 10.1155/2019/5362795 |