Loading…

Facile Preparation of Cu2O Nanoparticles and Reduced Graphene Oxide Nanocomposite for Electrochemical Sensing of Rhodamine B

In this paper, the preparation, characterization, and electrochemical application of Cu2O nanoparticles and an electrochemical reduced graphene oxide nanohybrid modified glassy carbon electrode (denoted as Cu2O NPs‒ERGO/GCE) are described. This modified electrode was used as an electrochemical senso...

Full description

Saved in:
Bibliographic Details
Published in:Nanomaterials (Basel, Switzerland) Switzerland), 2019-07, Vol.9 (7), p.958
Main Authors: He, Quanguo, Liu, Jun, Tian, Yaling, Wu, Yiyong, Magesa, Felista, Deng, Peihong, Li, Guangli
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, the preparation, characterization, and electrochemical application of Cu2O nanoparticles and an electrochemical reduced graphene oxide nanohybrid modified glassy carbon electrode (denoted as Cu2O NPs‒ERGO/GCE) are described. This modified electrode was used as an electrochemical sensor for the catalytic oxidation of rhodamine B (RhB), and it exhibited an excellent electrochemical performance for RhB. The oxidation potential of RhB was decreased greatly, and the sensitivity to detect RhB was improved significantly. Under optimum conditions, a linear dynamic range of 0.01–20.0 μM and a low detection limit of 0.006 μM were obtained with the Cu2O NPs‒ERGO/GCE by using second‒order derivative linear sweep voltammetry. In addition, the selectivity of the prepared modified electrode was analyzed for the determination of RhB. The practical application of this sensor was investigated for the determination of RhB in food samples, and satisfactory results were obtained.
ISSN:2079-4991
2079-4991
DOI:10.3390/nano9070958