Loading…

Structural basis for Ca2+-dependent activation of a plant metacaspase

Plant metacaspases mediate programmed cell death in development, biotic and abiotic stresses, damage-induced immune response, and resistance to pathogen attack. Most metacaspases require Ca 2+ for their activation and substrate processing. However, the Ca 2+ -dependent activation mechanism remains e...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2020-05, Vol.11 (1), p.2249-2249, Article 2249
Main Authors: Zhu, Ping, Yu, Xiao-Hong, Wang, Cheng, Zhang, Qingfang, Liu, Wu, McSweeney, Sean, Shanklin, John, Lam, Eric, Liu, Qun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c474t-f65a56df41b3130de261da10d2137d5178a14da35bf2ca306af17974d716bdf33
cites cdi_FETCH-LOGICAL-c474t-f65a56df41b3130de261da10d2137d5178a14da35bf2ca306af17974d716bdf33
container_end_page 2249
container_issue 1
container_start_page 2249
container_title Nature communications
container_volume 11
creator Zhu, Ping
Yu, Xiao-Hong
Wang, Cheng
Zhang, Qingfang
Liu, Wu
McSweeney, Sean
Shanklin, John
Lam, Eric
Liu, Qun
description Plant metacaspases mediate programmed cell death in development, biotic and abiotic stresses, damage-induced immune response, and resistance to pathogen attack. Most metacaspases require Ca 2+ for their activation and substrate processing. However, the Ca 2+ -dependent activation mechanism remains elusive. Here we report the crystal structures of Metacaspase 4 from Arabidopsis thaliana ( At MC4) that modulates Ca 2+ -dependent, damage-induced plant immune defense. The At MC4 structure exhibits an inhibitory conformation in which a large linker domain blocks activation and substrate access. In addition, the side chain of Lys225 in the linker domain blocks the active site by sitting directly between two catalytic residues. We show that the activation of At MC4 and cleavage of its physiological substrate involve multiple cleavages in the linker domain upon activation by Ca 2+ . Our analysis provides insight into the Ca 2+ -dependent activation of At MC4 and lays the basis for tuning its activity in response to stresses for engineering of more sustainable crops for food and biofuels. Plant metacaspases mediate immune response following activation by Ca 2+ . Here, via crystallography and functional analyses, the authors show that a linker domain in Arabidopsis Metacaspase 4 blocks substrate access to the active site but is cleaved multiple times in the presence of Ca 2+ to allow enzyme activation.
doi_str_mv 10.1038/s41467-020-15830-8
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e5aae62ead4748e8a9ae606526a29d0f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e5aae62ead4748e8a9ae606526a29d0f</doaj_id><sourcerecordid>2399790568</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-f65a56df41b3130de261da10d2137d5178a14da35bf2ca306af17974d716bdf33</originalsourceid><addsrcrecordid>eNp9Uk1v1DAUjBCIVkv_AKcILkgo4OfvXJDQqkClShyAs_Xij21W2XixnUr993ibCigHfLH9PDPveTRN8xLIOyBMv88cuFQdoaQDoRnp9JPmnBIOHSjKnv51Pmsuct6TulgPmvPnzRmjTFMC5Ly5_FbSYsuScGoHzGNuQ0ztFunbzvmjn52fS4u2jLdYxji3MbTYHies1YMvaDEfMfsXzbOAU_YXD_um-fHp8vv2S3f99fPV9uN1Z7nipQtSoJAucBgYMOI8leAQiKPAlBOgNAJ3yMQQqEVGJAZQveJOgRxcYGzTXK26LuLeHNN4wHRnIo7mvhDTzmAqo5288QLRS-rR1dbaa-zrlUhBJdLekVC1Pqxax2U4eGfrR6sJj0Qfv8zjjdnFW6MokQROw7xaBWIuo8l2LN7e2DjP3hYDEoSq5m-aNw9dUvy5-FzMYczWT9VBH5dsKCdEMC2lqtDX_0D3cUlz9dNQ1veqJ0LqiqIryqaYc_Lh98RAzCkZZk2Gqckw98kwJxJbSbmC551Pf6T_w_oFw1C4aw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2399790568</pqid></control><display><type>article</type><title>Structural basis for Ca2+-dependent activation of a plant metacaspase</title><source>Publicly Available Content Database</source><source>Nature</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Zhu, Ping ; Yu, Xiao-Hong ; Wang, Cheng ; Zhang, Qingfang ; Liu, Wu ; McSweeney, Sean ; Shanklin, John ; Lam, Eric ; Liu, Qun</creator><creatorcontrib>Zhu, Ping ; Yu, Xiao-Hong ; Wang, Cheng ; Zhang, Qingfang ; Liu, Wu ; McSweeney, Sean ; Shanklin, John ; Lam, Eric ; Liu, Qun ; Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><description>Plant metacaspases mediate programmed cell death in development, biotic and abiotic stresses, damage-induced immune response, and resistance to pathogen attack. Most metacaspases require Ca 2+ for their activation and substrate processing. However, the Ca 2+ -dependent activation mechanism remains elusive. Here we report the crystal structures of Metacaspase 4 from Arabidopsis thaliana ( At MC4) that modulates Ca 2+ -dependent, damage-induced plant immune defense. The At MC4 structure exhibits an inhibitory conformation in which a large linker domain blocks activation and substrate access. In addition, the side chain of Lys225 in the linker domain blocks the active site by sitting directly between two catalytic residues. We show that the activation of At MC4 and cleavage of its physiological substrate involve multiple cleavages in the linker domain upon activation by Ca 2+ . Our analysis provides insight into the Ca 2+ -dependent activation of At MC4 and lays the basis for tuning its activity in response to stresses for engineering of more sustainable crops for food and biofuels. Plant metacaspases mediate immune response following activation by Ca 2+ . Here, via crystallography and functional analyses, the authors show that a linker domain in Arabidopsis Metacaspase 4 blocks substrate access to the active site but is cleaved multiple times in the presence of Ca 2+ to allow enzyme activation.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-020-15830-8</identifier><identifier>PMID: 32382010</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>101/1 ; 631/449/2169 ; 631/45/535/1266 ; 82/16 ; 82/29 ; 82/47 ; 82/58 ; 82/80 ; 82/83 ; Abiotic stress ; Apoptosis ; BASIC BIOLOGICAL SCIENCES ; Biofuels ; Calcium ; Calcium ions ; Cell death ; Conformation ; Crystal structure ; Crystallography ; Damage ; Domains ; Food plants ; Humanities and Social Sciences ; Immune response ; Immune system ; Laboratories ; multidisciplinary ; Pathogens ; Science ; Science (multidisciplinary) ; Stresses ; Substrates</subject><ispartof>Nature communications, 2020-05, Vol.11 (1), p.2249-2249, Article 2249</ispartof><rights>This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2020</rights><rights>This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-f65a56df41b3130de261da10d2137d5178a14da35bf2ca306af17974d716bdf33</citedby><cites>FETCH-LOGICAL-c474t-f65a56df41b3130de261da10d2137d5178a14da35bf2ca306af17974d716bdf33</cites><orcidid>0000-0001-8462-9794 ; 0000-0002-1179-290X ; 000000021179290X ; 0000000184629794</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2399790568/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2399790568?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1615772$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Ping</creatorcontrib><creatorcontrib>Yu, Xiao-Hong</creatorcontrib><creatorcontrib>Wang, Cheng</creatorcontrib><creatorcontrib>Zhang, Qingfang</creatorcontrib><creatorcontrib>Liu, Wu</creatorcontrib><creatorcontrib>McSweeney, Sean</creatorcontrib><creatorcontrib>Shanklin, John</creatorcontrib><creatorcontrib>Lam, Eric</creatorcontrib><creatorcontrib>Liu, Qun</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><title>Structural basis for Ca2+-dependent activation of a plant metacaspase</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><description>Plant metacaspases mediate programmed cell death in development, biotic and abiotic stresses, damage-induced immune response, and resistance to pathogen attack. Most metacaspases require Ca 2+ for their activation and substrate processing. However, the Ca 2+ -dependent activation mechanism remains elusive. Here we report the crystal structures of Metacaspase 4 from Arabidopsis thaliana ( At MC4) that modulates Ca 2+ -dependent, damage-induced plant immune defense. The At MC4 structure exhibits an inhibitory conformation in which a large linker domain blocks activation and substrate access. In addition, the side chain of Lys225 in the linker domain blocks the active site by sitting directly between two catalytic residues. We show that the activation of At MC4 and cleavage of its physiological substrate involve multiple cleavages in the linker domain upon activation by Ca 2+ . Our analysis provides insight into the Ca 2+ -dependent activation of At MC4 and lays the basis for tuning its activity in response to stresses for engineering of more sustainable crops for food and biofuels. Plant metacaspases mediate immune response following activation by Ca 2+ . Here, via crystallography and functional analyses, the authors show that a linker domain in Arabidopsis Metacaspase 4 blocks substrate access to the active site but is cleaved multiple times in the presence of Ca 2+ to allow enzyme activation.</description><subject>101/1</subject><subject>631/449/2169</subject><subject>631/45/535/1266</subject><subject>82/16</subject><subject>82/29</subject><subject>82/47</subject><subject>82/58</subject><subject>82/80</subject><subject>82/83</subject><subject>Abiotic stress</subject><subject>Apoptosis</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biofuels</subject><subject>Calcium</subject><subject>Calcium ions</subject><subject>Cell death</subject><subject>Conformation</subject><subject>Crystal structure</subject><subject>Crystallography</subject><subject>Damage</subject><subject>Domains</subject><subject>Food plants</subject><subject>Humanities and Social Sciences</subject><subject>Immune response</subject><subject>Immune system</subject><subject>Laboratories</subject><subject>multidisciplinary</subject><subject>Pathogens</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Stresses</subject><subject>Substrates</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9Uk1v1DAUjBCIVkv_AKcILkgo4OfvXJDQqkClShyAs_Xij21W2XixnUr993ibCigHfLH9PDPveTRN8xLIOyBMv88cuFQdoaQDoRnp9JPmnBIOHSjKnv51Pmsuct6TulgPmvPnzRmjTFMC5Ly5_FbSYsuScGoHzGNuQ0ztFunbzvmjn52fS4u2jLdYxji3MbTYHies1YMvaDEfMfsXzbOAU_YXD_um-fHp8vv2S3f99fPV9uN1Z7nipQtSoJAucBgYMOI8leAQiKPAlBOgNAJ3yMQQqEVGJAZQveJOgRxcYGzTXK26LuLeHNN4wHRnIo7mvhDTzmAqo5288QLRS-rR1dbaa-zrlUhBJdLekVC1Pqxax2U4eGfrR6sJj0Qfv8zjjdnFW6MokQROw7xaBWIuo8l2LN7e2DjP3hYDEoSq5m-aNw9dUvy5-FzMYczWT9VBH5dsKCdEMC2lqtDX_0D3cUlz9dNQ1veqJ0LqiqIryqaYc_Lh98RAzCkZZk2Gqckw98kwJxJbSbmC551Pf6T_w_oFw1C4aw</recordid><startdate>20200507</startdate><enddate>20200507</enddate><creator>Zhu, Ping</creator><creator>Yu, Xiao-Hong</creator><creator>Wang, Cheng</creator><creator>Zhang, Qingfang</creator><creator>Liu, Wu</creator><creator>McSweeney, Sean</creator><creator>Shanklin, John</creator><creator>Lam, Eric</creator><creator>Liu, Qun</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8462-9794</orcidid><orcidid>https://orcid.org/0000-0002-1179-290X</orcidid><orcidid>https://orcid.org/000000021179290X</orcidid><orcidid>https://orcid.org/0000000184629794</orcidid></search><sort><creationdate>20200507</creationdate><title>Structural basis for Ca2+-dependent activation of a plant metacaspase</title><author>Zhu, Ping ; Yu, Xiao-Hong ; Wang, Cheng ; Zhang, Qingfang ; Liu, Wu ; McSweeney, Sean ; Shanklin, John ; Lam, Eric ; Liu, Qun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-f65a56df41b3130de261da10d2137d5178a14da35bf2ca306af17974d716bdf33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>101/1</topic><topic>631/449/2169</topic><topic>631/45/535/1266</topic><topic>82/16</topic><topic>82/29</topic><topic>82/47</topic><topic>82/58</topic><topic>82/80</topic><topic>82/83</topic><topic>Abiotic stress</topic><topic>Apoptosis</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biofuels</topic><topic>Calcium</topic><topic>Calcium ions</topic><topic>Cell death</topic><topic>Conformation</topic><topic>Crystal structure</topic><topic>Crystallography</topic><topic>Damage</topic><topic>Domains</topic><topic>Food plants</topic><topic>Humanities and Social Sciences</topic><topic>Immune response</topic><topic>Immune system</topic><topic>Laboratories</topic><topic>multidisciplinary</topic><topic>Pathogens</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Stresses</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Ping</creatorcontrib><creatorcontrib>Yu, Xiao-Hong</creatorcontrib><creatorcontrib>Wang, Cheng</creatorcontrib><creatorcontrib>Zhang, Qingfang</creatorcontrib><creatorcontrib>Liu, Wu</creatorcontrib><creatorcontrib>McSweeney, Sean</creatorcontrib><creatorcontrib>Shanklin, John</creatorcontrib><creatorcontrib>Lam, Eric</creatorcontrib><creatorcontrib>Liu, Qun</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><collection>Springer_OA刊</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Ping</au><au>Yu, Xiao-Hong</au><au>Wang, Cheng</au><au>Zhang, Qingfang</au><au>Liu, Wu</au><au>McSweeney, Sean</au><au>Shanklin, John</au><au>Lam, Eric</au><au>Liu, Qun</au><aucorp>Brookhaven National Lab. (BNL), Upton, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural basis for Ca2+-dependent activation of a plant metacaspase</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><date>2020-05-07</date><risdate>2020</risdate><volume>11</volume><issue>1</issue><spage>2249</spage><epage>2249</epage><pages>2249-2249</pages><artnum>2249</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Plant metacaspases mediate programmed cell death in development, biotic and abiotic stresses, damage-induced immune response, and resistance to pathogen attack. Most metacaspases require Ca 2+ for their activation and substrate processing. However, the Ca 2+ -dependent activation mechanism remains elusive. Here we report the crystal structures of Metacaspase 4 from Arabidopsis thaliana ( At MC4) that modulates Ca 2+ -dependent, damage-induced plant immune defense. The At MC4 structure exhibits an inhibitory conformation in which a large linker domain blocks activation and substrate access. In addition, the side chain of Lys225 in the linker domain blocks the active site by sitting directly between two catalytic residues. We show that the activation of At MC4 and cleavage of its physiological substrate involve multiple cleavages in the linker domain upon activation by Ca 2+ . Our analysis provides insight into the Ca 2+ -dependent activation of At MC4 and lays the basis for tuning its activity in response to stresses for engineering of more sustainable crops for food and biofuels. Plant metacaspases mediate immune response following activation by Ca 2+ . Here, via crystallography and functional analyses, the authors show that a linker domain in Arabidopsis Metacaspase 4 blocks substrate access to the active site but is cleaved multiple times in the presence of Ca 2+ to allow enzyme activation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32382010</pmid><doi>10.1038/s41467-020-15830-8</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8462-9794</orcidid><orcidid>https://orcid.org/0000-0002-1179-290X</orcidid><orcidid>https://orcid.org/000000021179290X</orcidid><orcidid>https://orcid.org/0000000184629794</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2020-05, Vol.11 (1), p.2249-2249, Article 2249
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_e5aae62ead4748e8a9ae606526a29d0f
source Publicly Available Content Database; Nature; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 101/1
631/449/2169
631/45/535/1266
82/16
82/29
82/47
82/58
82/80
82/83
Abiotic stress
Apoptosis
BASIC BIOLOGICAL SCIENCES
Biofuels
Calcium
Calcium ions
Cell death
Conformation
Crystal structure
Crystallography
Damage
Domains
Food plants
Humanities and Social Sciences
Immune response
Immune system
Laboratories
multidisciplinary
Pathogens
Science
Science (multidisciplinary)
Stresses
Substrates
title Structural basis for Ca2+-dependent activation of a plant metacaspase
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A47%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20basis%20for%20Ca2+-dependent%20activation%20of%20a%20plant%20metacaspase&rft.jtitle=Nature%20communications&rft.au=Zhu,%20Ping&rft.aucorp=Brookhaven%20National%20Lab.%20(BNL),%20Upton,%20NY%20(United%20States)&rft.date=2020-05-07&rft.volume=11&rft.issue=1&rft.spage=2249&rft.epage=2249&rft.pages=2249-2249&rft.artnum=2249&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-020-15830-8&rft_dat=%3Cproquest_doaj_%3E2399790568%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-f65a56df41b3130de261da10d2137d5178a14da35bf2ca306af17974d716bdf33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2399790568&rft_id=info:pmid/32382010&rfr_iscdi=true