Loading…
Research on Wheel-Rail Local Impact Identification Based on Axle Box Acceleration
Abnormal vibration signals of tramcar are mostly nonstationary and nonlinear signals. This study applied the Hilbert–Huang transform (HHT) to analyze abnormal vibration of the tramcar, aiming to overcome the limitations of some traditional time-frequency analysis methods, such as Fourier transform,...
Saved in:
Published in: | Shock and vibration 2022-02, Vol.2022, p.1-17 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abnormal vibration signals of tramcar are mostly nonstationary and nonlinear signals. This study applied the Hilbert–Huang transform (HHT) to analyze abnormal vibration of the tramcar, aiming to overcome the limitations of some traditional time-frequency analysis methods, such as Fourier transform, in dealing with nonstationary and nonlinear signals. Additionally, to address mode aliasing produced during empirical mode decomposition (EMD) used in classical HHT, this study proposed to first use complete EMD with adaptive noise for the decomposition of original vibration data, then eliminate the trend-term components with the calculated correlation coefficients, and finally perform denoising on high-frequency noisy components using the wavelet threshold method. After weighted reconstruction using denoised high-frequency components and low-frequency information components, data processing was finally optimized via HHT. Taking a tramcar as an example, the Hilbert spectra of the vertical acceleration of axle box were plotted via HHT, and the time-instantaneous, frequency-instantaneous energy 3D relations were obtained for the location of impact points. Further, the vibration characteristics were analyzed and quality indexes were calculated in combination with the marginal spectra so as to judge the reasons for abnormal vibration and failure modes of the tramcar. The results revealed that the proposed method was feasible and effective in vibration feature extraction and vibration impact analysis for tramcars. |
---|---|
ISSN: | 1070-9622 1875-9203 |
DOI: | 10.1155/2022/3226253 |