Loading…
Assessing Planet Nanosatellite Sensors for Ocean Color Usage
An increasing number of commercial nanosatellite-based Earth-observing sensors are providing high-resolution images for much of the coastal ocean region. Traditionally, to improve the accuracy of normalized water-leaving radiance (nLw) estimates, sensor gains are computed using in-orbit vicarious ca...
Saved in:
Published in: | Remote sensing (Basel, Switzerland) Switzerland), 2023-11, Vol.15 (22), p.5359 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An increasing number of commercial nanosatellite-based Earth-observing sensors are providing high-resolution images for much of the coastal ocean region. Traditionally, to improve the accuracy of normalized water-leaving radiance (nLw) estimates, sensor gains are computed using in-orbit vicarious calibration methods. The initial series of Planet nanosatellite sensors were primarily designed for land applications and are missing a second near-infrared band, which is typically used in selecting aerosol models for atmospheric correction over oceanographic regions. This study focuses on the vicarious calibration of Planet sensors and the duplication of its red band for use in both the aerosol model selection process and as input to bio-optical ocean product algorithms. Error measurements show the calibration performed well at the Marine Optical Buoy location near Lanai, Hawaii. Further validation was performed using in situ data from the Aerosol Robotic Network—Ocean Color platform in the northern Adriatic Sea. Bio-optical ocean color products were generated and compared with products from the Visual Infrared Imaging Radiometric Suite sensor. This approach for sensor gain generation and usage proved effective in increasing the accuracy of nLw measurements for bio-optical ocean product algorithms. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs15225359 |