Loading…

Preparation of Self-Assembled Composite Films Constructed by Chemically-Modified MXene and Dyes with Surface-Enhanced Raman Scattering Characterization

The effective functionalization and self-assembly of MXene are of crucial importance for a broad range of nanomaterial applications. In this work, we investigated the aggregates of sulfanilic acid-modified MXene (abbreviated as MXene-SO3H) with three model dyes at the air⁻water interface and demonst...

Full description

Saved in:
Bibliographic Details
Published in:Nanomaterials (Basel, Switzerland) Switzerland), 2019-02, Vol.9 (2), p.284
Main Authors: Chen, Kaiyue, Yan, Xiaoya, Li, Junkai, Jiao, Tifeng, Cai, Chong, Zou, Guodong, Wang, Ran, Wang, Mingli, Zhang, Lexin, Peng, Qiuming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The effective functionalization and self-assembly of MXene are of crucial importance for a broad range of nanomaterial applications. In this work, we investigated the aggregates of sulfanilic acid-modified MXene (abbreviated as MXene-SO3H) with three model dyes at the air⁻water interface and demonstrated the morphological and aggregation changes of composite films, using Langmuir-Blodgett (LB) technology, as well as excellent uniformity and reproducibility by using surface-enhanced Raman scattering (SERS) spectra. This research has found that cationic dye molecules were adsorbed onto negatively charged MXene-SO3H particles mainly through electrostatic interaction and the particles induced dyes to form highly ordered nanostructures including H- and/or J-aggregates corresponding to monomers in bulk solution. The surface pressure-area isotherms from different dye sub phases confirmed that the stable composite films have been successfully formed. And the spectral results reveal that different dyes have different types of aggregations. In addition, the SERS spectra indicated that the optimal layers of MXene-SO3H/methylene blue (MB) films was 50 layers using rhodamine 6G (R6G) as probe molecule. And the formed 50 layers of MXene-SO3H/MB films (MXene-SO3H/MB-50) as SERS substrate were proved to possess excellent uniformity and repeatability.
ISSN:2079-4991
2079-4991
DOI:10.3390/nano9020284