Loading…

Preparation of Self-Assembled Composite Films Constructed by Chemically-Modified MXene and Dyes with Surface-Enhanced Raman Scattering Characterization

The effective functionalization and self-assembly of MXene are of crucial importance for a broad range of nanomaterial applications. In this work, we investigated the aggregates of sulfanilic acid-modified MXene (abbreviated as MXene-SO3H) with three model dyes at the air⁻water interface and demonst...

Full description

Saved in:
Bibliographic Details
Published in:Nanomaterials (Basel, Switzerland) Switzerland), 2019-02, Vol.9 (2), p.284
Main Authors: Chen, Kaiyue, Yan, Xiaoya, Li, Junkai, Jiao, Tifeng, Cai, Chong, Zou, Guodong, Wang, Ran, Wang, Mingli, Zhang, Lexin, Peng, Qiuming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c475t-a7e10671e72169457fad6a2f9009b57924a15e051694f3083b9d4d9494c5bec3
cites cdi_FETCH-LOGICAL-c475t-a7e10671e72169457fad6a2f9009b57924a15e051694f3083b9d4d9494c5bec3
container_end_page
container_issue 2
container_start_page 284
container_title Nanomaterials (Basel, Switzerland)
container_volume 9
creator Chen, Kaiyue
Yan, Xiaoya
Li, Junkai
Jiao, Tifeng
Cai, Chong
Zou, Guodong
Wang, Ran
Wang, Mingli
Zhang, Lexin
Peng, Qiuming
description The effective functionalization and self-assembly of MXene are of crucial importance for a broad range of nanomaterial applications. In this work, we investigated the aggregates of sulfanilic acid-modified MXene (abbreviated as MXene-SO3H) with three model dyes at the air⁻water interface and demonstrated the morphological and aggregation changes of composite films, using Langmuir-Blodgett (LB) technology, as well as excellent uniformity and reproducibility by using surface-enhanced Raman scattering (SERS) spectra. This research has found that cationic dye molecules were adsorbed onto negatively charged MXene-SO3H particles mainly through electrostatic interaction and the particles induced dyes to form highly ordered nanostructures including H- and/or J-aggregates corresponding to monomers in bulk solution. The surface pressure-area isotherms from different dye sub phases confirmed that the stable composite films have been successfully formed. And the spectral results reveal that different dyes have different types of aggregations. In addition, the SERS spectra indicated that the optimal layers of MXene-SO3H/methylene blue (MB) films was 50 layers using rhodamine 6G (R6G) as probe molecule. And the formed 50 layers of MXene-SO3H/MB films (MXene-SO3H/MB-50) as SERS substrate were proved to possess excellent uniformity and repeatability.
doi_str_mv 10.3390/nano9020284
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e6331e5e05f54dc789963f9b1cfe8ab8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e6331e5e05f54dc789963f9b1cfe8ab8</doaj_id><sourcerecordid>2239625649</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-a7e10671e72169457fad6a2f9009b57924a15e051694f3083b9d4d9494c5bec3</originalsourceid><addsrcrecordid>eNpVkkFv1DAQhSMEolXpiTuKxBEF7NhO4gtStbRQqRWI7YGbNXHGu14l9mI7oOWP8Hfxdku19cWeeU-f30hTFK8pec-YJB8cOC9JTeqOPytOa9LKiktJnx-9T4rzGDckH0lZJ9jL4oSRtqNNI06Lv98CbiFAst6V3pRLHE11ESNO_YhDufDT1kebsLyy4xRz7WIKs05Z63flYo2T1TCOu-rWD9bY3L79gQ5LcEP5aYex_G3TulzOwYDG6tKtwels-g4TuHKpISUM1q0yKYfQ--LPfZZXxQsDY8Tzh_usuLu6vFt8qW6-fr5eXNxUmrciVdAiJU1Lsa1pI7loDQwN1EbmYXvRypoDFUjEXjSMdKyXAx8kl1yLHjU7K64P2MHDRm2DnSDslAer7hs-rBSEZPWIChvGKO5hRvBBt52UDTOyp9pgB32XWR8PrO3cTzhodCnA-AT6VHF2rVb-l2o4kZK3GfD2ARD8zxljUhs_B5fHV3XNZFOLhsvsendw6eBjDGgef6BE7XdCHe1Edr85DvXo_b8B7B-VFrS_</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2239625649</pqid></control><display><type>article</type><title>Preparation of Self-Assembled Composite Films Constructed by Chemically-Modified MXene and Dyes with Surface-Enhanced Raman Scattering Characterization</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central</source><creator>Chen, Kaiyue ; Yan, Xiaoya ; Li, Junkai ; Jiao, Tifeng ; Cai, Chong ; Zou, Guodong ; Wang, Ran ; Wang, Mingli ; Zhang, Lexin ; Peng, Qiuming</creator><creatorcontrib>Chen, Kaiyue ; Yan, Xiaoya ; Li, Junkai ; Jiao, Tifeng ; Cai, Chong ; Zou, Guodong ; Wang, Ran ; Wang, Mingli ; Zhang, Lexin ; Peng, Qiuming</creatorcontrib><description>The effective functionalization and self-assembly of MXene are of crucial importance for a broad range of nanomaterial applications. In this work, we investigated the aggregates of sulfanilic acid-modified MXene (abbreviated as MXene-SO3H) with three model dyes at the air⁻water interface and demonstrated the morphological and aggregation changes of composite films, using Langmuir-Blodgett (LB) technology, as well as excellent uniformity and reproducibility by using surface-enhanced Raman scattering (SERS) spectra. This research has found that cationic dye molecules were adsorbed onto negatively charged MXene-SO3H particles mainly through electrostatic interaction and the particles induced dyes to form highly ordered nanostructures including H- and/or J-aggregates corresponding to monomers in bulk solution. The surface pressure-area isotherms from different dye sub phases confirmed that the stable composite films have been successfully formed. And the spectral results reveal that different dyes have different types of aggregations. In addition, the SERS spectra indicated that the optimal layers of MXene-SO3H/methylene blue (MB) films was 50 layers using rhodamine 6G (R6G) as probe molecule. And the formed 50 layers of MXene-SO3H/MB films (MXene-SO3H/MB-50) as SERS substrate were proved to possess excellent uniformity and repeatability.</description><identifier>ISSN: 2079-4991</identifier><identifier>EISSN: 2079-4991</identifier><identifier>DOI: 10.3390/nano9020284</identifier><identifier>PMID: 30781665</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Aggregates ; Air-water interface ; Cationic dyes ; Charged particles ; Dyes ; dyes aggregation ; Electrostatic properties ; Graphene ; Laboratories ; Langmuir film ; Langmuir-Blodgett films ; Methylene blue ; Molecular structure ; Monomers ; Mud-water interfaces ; MXene ; MXenes ; Nanomaterials ; Nanoparticles ; Nanostructured materials ; Organic chemistry ; Peptides ; Pressure ; Raman spectra ; Reproducibility ; Rhodamine 6G ; Self-assembly ; Substrates ; Sulfanilic acid ; surface-enhanced Raman scattering ; Water treatment</subject><ispartof>Nanomaterials (Basel, Switzerland), 2019-02, Vol.9 (2), p.284</ispartof><rights>2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-a7e10671e72169457fad6a2f9009b57924a15e051694f3083b9d4d9494c5bec3</citedby><cites>FETCH-LOGICAL-c475t-a7e10671e72169457fad6a2f9009b57924a15e051694f3083b9d4d9494c5bec3</cites><orcidid>0000-0003-1238-0277</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2239625649/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2239625649?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,44569,53770,53772,74873</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30781665$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Kaiyue</creatorcontrib><creatorcontrib>Yan, Xiaoya</creatorcontrib><creatorcontrib>Li, Junkai</creatorcontrib><creatorcontrib>Jiao, Tifeng</creatorcontrib><creatorcontrib>Cai, Chong</creatorcontrib><creatorcontrib>Zou, Guodong</creatorcontrib><creatorcontrib>Wang, Ran</creatorcontrib><creatorcontrib>Wang, Mingli</creatorcontrib><creatorcontrib>Zhang, Lexin</creatorcontrib><creatorcontrib>Peng, Qiuming</creatorcontrib><title>Preparation of Self-Assembled Composite Films Constructed by Chemically-Modified MXene and Dyes with Surface-Enhanced Raman Scattering Characterization</title><title>Nanomaterials (Basel, Switzerland)</title><addtitle>Nanomaterials (Basel)</addtitle><description>The effective functionalization and self-assembly of MXene are of crucial importance for a broad range of nanomaterial applications. In this work, we investigated the aggregates of sulfanilic acid-modified MXene (abbreviated as MXene-SO3H) with three model dyes at the air⁻water interface and demonstrated the morphological and aggregation changes of composite films, using Langmuir-Blodgett (LB) technology, as well as excellent uniformity and reproducibility by using surface-enhanced Raman scattering (SERS) spectra. This research has found that cationic dye molecules were adsorbed onto negatively charged MXene-SO3H particles mainly through electrostatic interaction and the particles induced dyes to form highly ordered nanostructures including H- and/or J-aggregates corresponding to monomers in bulk solution. The surface pressure-area isotherms from different dye sub phases confirmed that the stable composite films have been successfully formed. And the spectral results reveal that different dyes have different types of aggregations. In addition, the SERS spectra indicated that the optimal layers of MXene-SO3H/methylene blue (MB) films was 50 layers using rhodamine 6G (R6G) as probe molecule. And the formed 50 layers of MXene-SO3H/MB films (MXene-SO3H/MB-50) as SERS substrate were proved to possess excellent uniformity and repeatability.</description><subject>Aggregates</subject><subject>Air-water interface</subject><subject>Cationic dyes</subject><subject>Charged particles</subject><subject>Dyes</subject><subject>dyes aggregation</subject><subject>Electrostatic properties</subject><subject>Graphene</subject><subject>Laboratories</subject><subject>Langmuir film</subject><subject>Langmuir-Blodgett films</subject><subject>Methylene blue</subject><subject>Molecular structure</subject><subject>Monomers</subject><subject>Mud-water interfaces</subject><subject>MXene</subject><subject>MXenes</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanostructured materials</subject><subject>Organic chemistry</subject><subject>Peptides</subject><subject>Pressure</subject><subject>Raman spectra</subject><subject>Reproducibility</subject><subject>Rhodamine 6G</subject><subject>Self-assembly</subject><subject>Substrates</subject><subject>Sulfanilic acid</subject><subject>surface-enhanced Raman scattering</subject><subject>Water treatment</subject><issn>2079-4991</issn><issn>2079-4991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVkkFv1DAQhSMEolXpiTuKxBEF7NhO4gtStbRQqRWI7YGbNXHGu14l9mI7oOWP8Hfxdku19cWeeU-f30hTFK8pec-YJB8cOC9JTeqOPytOa9LKiktJnx-9T4rzGDckH0lZJ9jL4oSRtqNNI06Lv98CbiFAst6V3pRLHE11ESNO_YhDufDT1kebsLyy4xRz7WIKs05Z63flYo2T1TCOu-rWD9bY3L79gQ5LcEP5aYex_G3TulzOwYDG6tKtwels-g4TuHKpISUM1q0yKYfQ--LPfZZXxQsDY8Tzh_usuLu6vFt8qW6-fr5eXNxUmrciVdAiJU1Lsa1pI7loDQwN1EbmYXvRypoDFUjEXjSMdKyXAx8kl1yLHjU7K64P2MHDRm2DnSDslAer7hs-rBSEZPWIChvGKO5hRvBBt52UDTOyp9pgB32XWR8PrO3cTzhodCnA-AT6VHF2rVb-l2o4kZK3GfD2ARD8zxljUhs_B5fHV3XNZFOLhsvsendw6eBjDGgef6BE7XdCHe1Edr85DvXo_b8B7B-VFrS_</recordid><startdate>20190218</startdate><enddate>20190218</enddate><creator>Chen, Kaiyue</creator><creator>Yan, Xiaoya</creator><creator>Li, Junkai</creator><creator>Jiao, Tifeng</creator><creator>Cai, Chong</creator><creator>Zou, Guodong</creator><creator>Wang, Ran</creator><creator>Wang, Mingli</creator><creator>Zhang, Lexin</creator><creator>Peng, Qiuming</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1238-0277</orcidid></search><sort><creationdate>20190218</creationdate><title>Preparation of Self-Assembled Composite Films Constructed by Chemically-Modified MXene and Dyes with Surface-Enhanced Raman Scattering Characterization</title><author>Chen, Kaiyue ; Yan, Xiaoya ; Li, Junkai ; Jiao, Tifeng ; Cai, Chong ; Zou, Guodong ; Wang, Ran ; Wang, Mingli ; Zhang, Lexin ; Peng, Qiuming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-a7e10671e72169457fad6a2f9009b57924a15e051694f3083b9d4d9494c5bec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aggregates</topic><topic>Air-water interface</topic><topic>Cationic dyes</topic><topic>Charged particles</topic><topic>Dyes</topic><topic>dyes aggregation</topic><topic>Electrostatic properties</topic><topic>Graphene</topic><topic>Laboratories</topic><topic>Langmuir film</topic><topic>Langmuir-Blodgett films</topic><topic>Methylene blue</topic><topic>Molecular structure</topic><topic>Monomers</topic><topic>Mud-water interfaces</topic><topic>MXene</topic><topic>MXenes</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanostructured materials</topic><topic>Organic chemistry</topic><topic>Peptides</topic><topic>Pressure</topic><topic>Raman spectra</topic><topic>Reproducibility</topic><topic>Rhodamine 6G</topic><topic>Self-assembly</topic><topic>Substrates</topic><topic>Sulfanilic acid</topic><topic>surface-enhanced Raman scattering</topic><topic>Water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Kaiyue</creatorcontrib><creatorcontrib>Yan, Xiaoya</creatorcontrib><creatorcontrib>Li, Junkai</creatorcontrib><creatorcontrib>Jiao, Tifeng</creatorcontrib><creatorcontrib>Cai, Chong</creatorcontrib><creatorcontrib>Zou, Guodong</creatorcontrib><creatorcontrib>Wang, Ran</creatorcontrib><creatorcontrib>Wang, Mingli</creatorcontrib><creatorcontrib>Zhang, Lexin</creatorcontrib><creatorcontrib>Peng, Qiuming</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Nanomaterials (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Kaiyue</au><au>Yan, Xiaoya</au><au>Li, Junkai</au><au>Jiao, Tifeng</au><au>Cai, Chong</au><au>Zou, Guodong</au><au>Wang, Ran</au><au>Wang, Mingli</au><au>Zhang, Lexin</au><au>Peng, Qiuming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation of Self-Assembled Composite Films Constructed by Chemically-Modified MXene and Dyes with Surface-Enhanced Raman Scattering Characterization</atitle><jtitle>Nanomaterials (Basel, Switzerland)</jtitle><addtitle>Nanomaterials (Basel)</addtitle><date>2019-02-18</date><risdate>2019</risdate><volume>9</volume><issue>2</issue><spage>284</spage><pages>284-</pages><issn>2079-4991</issn><eissn>2079-4991</eissn><abstract>The effective functionalization and self-assembly of MXene are of crucial importance for a broad range of nanomaterial applications. In this work, we investigated the aggregates of sulfanilic acid-modified MXene (abbreviated as MXene-SO3H) with three model dyes at the air⁻water interface and demonstrated the morphological and aggregation changes of composite films, using Langmuir-Blodgett (LB) technology, as well as excellent uniformity and reproducibility by using surface-enhanced Raman scattering (SERS) spectra. This research has found that cationic dye molecules were adsorbed onto negatively charged MXene-SO3H particles mainly through electrostatic interaction and the particles induced dyes to form highly ordered nanostructures including H- and/or J-aggregates corresponding to monomers in bulk solution. The surface pressure-area isotherms from different dye sub phases confirmed that the stable composite films have been successfully formed. And the spectral results reveal that different dyes have different types of aggregations. In addition, the SERS spectra indicated that the optimal layers of MXene-SO3H/methylene blue (MB) films was 50 layers using rhodamine 6G (R6G) as probe molecule. And the formed 50 layers of MXene-SO3H/MB films (MXene-SO3H/MB-50) as SERS substrate were proved to possess excellent uniformity and repeatability.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>30781665</pmid><doi>10.3390/nano9020284</doi><orcidid>https://orcid.org/0000-0003-1238-0277</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-4991
ispartof Nanomaterials (Basel, Switzerland), 2019-02, Vol.9 (2), p.284
issn 2079-4991
2079-4991
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_e6331e5e05f54dc789963f9b1cfe8ab8
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central
subjects Aggregates
Air-water interface
Cationic dyes
Charged particles
Dyes
dyes aggregation
Electrostatic properties
Graphene
Laboratories
Langmuir film
Langmuir-Blodgett films
Methylene blue
Molecular structure
Monomers
Mud-water interfaces
MXene
MXenes
Nanomaterials
Nanoparticles
Nanostructured materials
Organic chemistry
Peptides
Pressure
Raman spectra
Reproducibility
Rhodamine 6G
Self-assembly
Substrates
Sulfanilic acid
surface-enhanced Raman scattering
Water treatment
title Preparation of Self-Assembled Composite Films Constructed by Chemically-Modified MXene and Dyes with Surface-Enhanced Raman Scattering Characterization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T13%3A24%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20of%20Self-Assembled%20Composite%20Films%20Constructed%20by%20Chemically-Modified%20MXene%20and%20Dyes%20with%20Surface-Enhanced%20Raman%20Scattering%20Characterization&rft.jtitle=Nanomaterials%20(Basel,%20Switzerland)&rft.au=Chen,%20Kaiyue&rft.date=2019-02-18&rft.volume=9&rft.issue=2&rft.spage=284&rft.pages=284-&rft.issn=2079-4991&rft.eissn=2079-4991&rft_id=info:doi/10.3390/nano9020284&rft_dat=%3Cproquest_doaj_%3E2239625649%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c475t-a7e10671e72169457fad6a2f9009b57924a15e051694f3083b9d4d9494c5bec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2239625649&rft_id=info:pmid/30781665&rfr_iscdi=true