Loading…
Capacity Allocation Strategy Using Virtual Synchronous Compensator for Renewable Energy Stations Based on Fuzzy Chance Constraints
The uncertainty of high penetration of renewable energy brings challenges to the safe and stable operation of a power system; the virtual synchronous compensation (VSCOM) can shift the demand and compensate real-time discrepancy between generation and demand, and can improve the active support abili...
Saved in:
Published in: | Energies (Basel) 2022-12, Vol.15 (24), p.9306 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c359t-8497aa60021b8519449af7f34da23795880878579132cda82a6a43f67cbef1223 |
container_end_page | |
container_issue | 24 |
container_start_page | 9306 |
container_title | Energies (Basel) |
container_volume | 15 |
creator | Xu, Zhi Song, Pengfei Yin, Chunya Kang, Pengpeng Zhai, Baoyu |
description | The uncertainty of high penetration of renewable energy brings challenges to the safe and stable operation of a power system; the virtual synchronous compensation (VSCOM) can shift the demand and compensate real-time discrepancy between generation and demand, and can improve the active support ability for the power system. This paper proposes a novel capacity allocation strategy using VSCOM for renewable energy stations based on fuzzy constraints. Firstly, the basic framework of the VSCOM is constructed with energy storage and reactive power generator (SVG) unit. Secondly, the inertia and standby capacity requirements of high penetration of renewable energy system are modeled; on this basis, a capacity allocation model of each sub unit of the VSCOM is developed, and the investment economy and stable support needs are considered. Thirdly, the uncertainty set of wind power output is defined based on the historical data to find a decision that minimizes the worst-case expected where the worst case should be taken. Finally, the simulation results show that the proposed optimal sizing strategy can effectively take advantage of stability and economy, and the VSCOM can meet the inertia support demand of 98.6% of a high proportion of renewable energy systems. |
doi_str_mv | 10.3390/en15249306 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e63808d97c15483ea33b5623ce5a7755</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745602712</galeid><doaj_id>oai_doaj_org_article_e63808d97c15483ea33b5623ce5a7755</doaj_id><sourcerecordid>A745602712</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-8497aa60021b8519449af7f34da23795880878579132cda82a6a43f67cbef1223</originalsourceid><addsrcrecordid>eNpNkVFrFDEQxxdRsNS--AkCvglXk8wm2TyeS6uFguBZX8NcNnvNsZecSRbZPvrJTe9ETQgzDPP_zT9M07xl9BpA0w8uMMFbDVS-aC6Y1nLFqIKX_-Wvm6uc97QeAAYAF82vHo9ofVnIepqixeJjIJuSsLjdQh6yDzvy3acy40Q2S7CPKYY4Z9LHw9GFjCUmMtb31QX3E7eTIzfBpSrdlBMrk4-Y3UAq9XZ-elpI_4jBuqoPuU7xoeQ3zasRp-yu_sTL5uH25lv_eXX_5dNdv75fWRC6rLpWK0RJKWfbTjDdthpHNUI7IAelRdfRTnVCaQbcDthxlNjCKJXdupFxDpfN3Zk7RNybY_IHTIuJ6M2pENPOYCreTs44CZU2aGWZaDtwCLAVkoN1ApUSorLenVnHFH_MLhezj3MK1b7hSkipW3nquj537bBCfRhj_bKtd3AHb2Nwo6_1tWqFpFyxZ4vvzwKbYs7JjX9tMmqed2z-7Rh-A-HTmIA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756694655</pqid></control><display><type>article</type><title>Capacity Allocation Strategy Using Virtual Synchronous Compensator for Renewable Energy Stations Based on Fuzzy Chance Constraints</title><source>Publicly Available Content Database</source><creator>Xu, Zhi ; Song, Pengfei ; Yin, Chunya ; Kang, Pengpeng ; Zhai, Baoyu</creator><creatorcontrib>Xu, Zhi ; Song, Pengfei ; Yin, Chunya ; Kang, Pengpeng ; Zhai, Baoyu</creatorcontrib><description>The uncertainty of high penetration of renewable energy brings challenges to the safe and stable operation of a power system; the virtual synchronous compensation (VSCOM) can shift the demand and compensate real-time discrepancy between generation and demand, and can improve the active support ability for the power system. This paper proposes a novel capacity allocation strategy using VSCOM for renewable energy stations based on fuzzy constraints. Firstly, the basic framework of the VSCOM is constructed with energy storage and reactive power generator (SVG) unit. Secondly, the inertia and standby capacity requirements of high penetration of renewable energy system are modeled; on this basis, a capacity allocation model of each sub unit of the VSCOM is developed, and the investment economy and stable support needs are considered. Thirdly, the uncertainty set of wind power output is defined based on the historical data to find a decision that minimizes the worst-case expected where the worst case should be taken. Finally, the simulation results show that the proposed optimal sizing strategy can effectively take advantage of stability and economy, and the VSCOM can meet the inertia support demand of 98.6% of a high proportion of renewable energy systems.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en15249306</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Alternative energy sources ; Analysis ; capacity configuration ; Electric power systems ; Electric utilities ; Electricity distribution ; Energy management systems ; Energy storage ; Optimization algorithms ; Reactive power ; renewable energy station ; Renewable resources ; Supply and demand ; Uncertainty ; virtual synchronous compensator (VSCOM) ; Wind power</subject><ispartof>Energies (Basel), 2022-12, Vol.15 (24), p.9306</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-8497aa60021b8519449af7f34da23795880878579132cda82a6a43f67cbef1223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2756694655/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2756694655?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Xu, Zhi</creatorcontrib><creatorcontrib>Song, Pengfei</creatorcontrib><creatorcontrib>Yin, Chunya</creatorcontrib><creatorcontrib>Kang, Pengpeng</creatorcontrib><creatorcontrib>Zhai, Baoyu</creatorcontrib><title>Capacity Allocation Strategy Using Virtual Synchronous Compensator for Renewable Energy Stations Based on Fuzzy Chance Constraints</title><title>Energies (Basel)</title><description>The uncertainty of high penetration of renewable energy brings challenges to the safe and stable operation of a power system; the virtual synchronous compensation (VSCOM) can shift the demand and compensate real-time discrepancy between generation and demand, and can improve the active support ability for the power system. This paper proposes a novel capacity allocation strategy using VSCOM for renewable energy stations based on fuzzy constraints. Firstly, the basic framework of the VSCOM is constructed with energy storage and reactive power generator (SVG) unit. Secondly, the inertia and standby capacity requirements of high penetration of renewable energy system are modeled; on this basis, a capacity allocation model of each sub unit of the VSCOM is developed, and the investment economy and stable support needs are considered. Thirdly, the uncertainty set of wind power output is defined based on the historical data to find a decision that minimizes the worst-case expected where the worst case should be taken. Finally, the simulation results show that the proposed optimal sizing strategy can effectively take advantage of stability and economy, and the VSCOM can meet the inertia support demand of 98.6% of a high proportion of renewable energy systems.</description><subject>Alternative energy sources</subject><subject>Analysis</subject><subject>capacity configuration</subject><subject>Electric power systems</subject><subject>Electric utilities</subject><subject>Electricity distribution</subject><subject>Energy management systems</subject><subject>Energy storage</subject><subject>Optimization algorithms</subject><subject>Reactive power</subject><subject>renewable energy station</subject><subject>Renewable resources</subject><subject>Supply and demand</subject><subject>Uncertainty</subject><subject>virtual synchronous compensator (VSCOM)</subject><subject>Wind power</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkVFrFDEQxxdRsNS--AkCvglXk8wm2TyeS6uFguBZX8NcNnvNsZecSRbZPvrJTe9ETQgzDPP_zT9M07xl9BpA0w8uMMFbDVS-aC6Y1nLFqIKX_-Wvm6uc97QeAAYAF82vHo9ofVnIepqixeJjIJuSsLjdQh6yDzvy3acy40Q2S7CPKYY4Z9LHw9GFjCUmMtb31QX3E7eTIzfBpSrdlBMrk4-Y3UAq9XZ-elpI_4jBuqoPuU7xoeQ3zasRp-yu_sTL5uH25lv_eXX_5dNdv75fWRC6rLpWK0RJKWfbTjDdthpHNUI7IAelRdfRTnVCaQbcDthxlNjCKJXdupFxDpfN3Zk7RNybY_IHTIuJ6M2pENPOYCreTs44CZU2aGWZaDtwCLAVkoN1ApUSorLenVnHFH_MLhezj3MK1b7hSkipW3nquj537bBCfRhj_bKtd3AHb2Nwo6_1tWqFpFyxZ4vvzwKbYs7JjX9tMmqed2z-7Rh-A-HTmIA</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Xu, Zhi</creator><creator>Song, Pengfei</creator><creator>Yin, Chunya</creator><creator>Kang, Pengpeng</creator><creator>Zhai, Baoyu</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope></search><sort><creationdate>20221201</creationdate><title>Capacity Allocation Strategy Using Virtual Synchronous Compensator for Renewable Energy Stations Based on Fuzzy Chance Constraints</title><author>Xu, Zhi ; Song, Pengfei ; Yin, Chunya ; Kang, Pengpeng ; Zhai, Baoyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-8497aa60021b8519449af7f34da23795880878579132cda82a6a43f67cbef1223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alternative energy sources</topic><topic>Analysis</topic><topic>capacity configuration</topic><topic>Electric power systems</topic><topic>Electric utilities</topic><topic>Electricity distribution</topic><topic>Energy management systems</topic><topic>Energy storage</topic><topic>Optimization algorithms</topic><topic>Reactive power</topic><topic>renewable energy station</topic><topic>Renewable resources</topic><topic>Supply and demand</topic><topic>Uncertainty</topic><topic>virtual synchronous compensator (VSCOM)</topic><topic>Wind power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Zhi</creatorcontrib><creatorcontrib>Song, Pengfei</creatorcontrib><creatorcontrib>Yin, Chunya</creatorcontrib><creatorcontrib>Kang, Pengpeng</creatorcontrib><creatorcontrib>Zhai, Baoyu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Zhi</au><au>Song, Pengfei</au><au>Yin, Chunya</au><au>Kang, Pengpeng</au><au>Zhai, Baoyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Capacity Allocation Strategy Using Virtual Synchronous Compensator for Renewable Energy Stations Based on Fuzzy Chance Constraints</atitle><jtitle>Energies (Basel)</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>15</volume><issue>24</issue><spage>9306</spage><pages>9306-</pages><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>The uncertainty of high penetration of renewable energy brings challenges to the safe and stable operation of a power system; the virtual synchronous compensation (VSCOM) can shift the demand and compensate real-time discrepancy between generation and demand, and can improve the active support ability for the power system. This paper proposes a novel capacity allocation strategy using VSCOM for renewable energy stations based on fuzzy constraints. Firstly, the basic framework of the VSCOM is constructed with energy storage and reactive power generator (SVG) unit. Secondly, the inertia and standby capacity requirements of high penetration of renewable energy system are modeled; on this basis, a capacity allocation model of each sub unit of the VSCOM is developed, and the investment economy and stable support needs are considered. Thirdly, the uncertainty set of wind power output is defined based on the historical data to find a decision that minimizes the worst-case expected where the worst case should be taken. Finally, the simulation results show that the proposed optimal sizing strategy can effectively take advantage of stability and economy, and the VSCOM can meet the inertia support demand of 98.6% of a high proportion of renewable energy systems.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/en15249306</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1073 |
ispartof | Energies (Basel), 2022-12, Vol.15 (24), p.9306 |
issn | 1996-1073 1996-1073 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_e63808d97c15483ea33b5623ce5a7755 |
source | Publicly Available Content Database |
subjects | Alternative energy sources Analysis capacity configuration Electric power systems Electric utilities Electricity distribution Energy management systems Energy storage Optimization algorithms Reactive power renewable energy station Renewable resources Supply and demand Uncertainty virtual synchronous compensator (VSCOM) Wind power |
title | Capacity Allocation Strategy Using Virtual Synchronous Compensator for Renewable Energy Stations Based on Fuzzy Chance Constraints |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A36%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Capacity%20Allocation%20Strategy%20Using%20Virtual%20Synchronous%20Compensator%20for%20Renewable%20Energy%20Stations%20Based%20on%20Fuzzy%20Chance%20Constraints&rft.jtitle=Energies%20(Basel)&rft.au=Xu,%20Zhi&rft.date=2022-12-01&rft.volume=15&rft.issue=24&rft.spage=9306&rft.pages=9306-&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en15249306&rft_dat=%3Cgale_doaj_%3EA745602712%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-8497aa60021b8519449af7f34da23795880878579132cda82a6a43f67cbef1223%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2756694655&rft_id=info:pmid/&rft_galeid=A745602712&rfr_iscdi=true |