Loading…

Capacity Allocation Strategy Using Virtual Synchronous Compensator for Renewable Energy Stations Based on Fuzzy Chance Constraints

The uncertainty of high penetration of renewable energy brings challenges to the safe and stable operation of a power system; the virtual synchronous compensation (VSCOM) can shift the demand and compensate real-time discrepancy between generation and demand, and can improve the active support abili...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2022-12, Vol.15 (24), p.9306
Main Authors: Xu, Zhi, Song, Pengfei, Yin, Chunya, Kang, Pengpeng, Zhai, Baoyu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c359t-8497aa60021b8519449af7f34da23795880878579132cda82a6a43f67cbef1223
container_end_page
container_issue 24
container_start_page 9306
container_title Energies (Basel)
container_volume 15
creator Xu, Zhi
Song, Pengfei
Yin, Chunya
Kang, Pengpeng
Zhai, Baoyu
description The uncertainty of high penetration of renewable energy brings challenges to the safe and stable operation of a power system; the virtual synchronous compensation (VSCOM) can shift the demand and compensate real-time discrepancy between generation and demand, and can improve the active support ability for the power system. This paper proposes a novel capacity allocation strategy using VSCOM for renewable energy stations based on fuzzy constraints. Firstly, the basic framework of the VSCOM is constructed with energy storage and reactive power generator (SVG) unit. Secondly, the inertia and standby capacity requirements of high penetration of renewable energy system are modeled; on this basis, a capacity allocation model of each sub unit of the VSCOM is developed, and the investment economy and stable support needs are considered. Thirdly, the uncertainty set of wind power output is defined based on the historical data to find a decision that minimizes the worst-case expected where the worst case should be taken. Finally, the simulation results show that the proposed optimal sizing strategy can effectively take advantage of stability and economy, and the VSCOM can meet the inertia support demand of 98.6% of a high proportion of renewable energy systems.
doi_str_mv 10.3390/en15249306
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e63808d97c15483ea33b5623ce5a7755</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745602712</galeid><doaj_id>oai_doaj_org_article_e63808d97c15483ea33b5623ce5a7755</doaj_id><sourcerecordid>A745602712</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-8497aa60021b8519449af7f34da23795880878579132cda82a6a43f67cbef1223</originalsourceid><addsrcrecordid>eNpNkVFrFDEQxxdRsNS--AkCvglXk8wm2TyeS6uFguBZX8NcNnvNsZecSRbZPvrJTe9ETQgzDPP_zT9M07xl9BpA0w8uMMFbDVS-aC6Y1nLFqIKX_-Wvm6uc97QeAAYAF82vHo9ofVnIepqixeJjIJuSsLjdQh6yDzvy3acy40Q2S7CPKYY4Z9LHw9GFjCUmMtb31QX3E7eTIzfBpSrdlBMrk4-Y3UAq9XZ-elpI_4jBuqoPuU7xoeQ3zasRp-yu_sTL5uH25lv_eXX_5dNdv75fWRC6rLpWK0RJKWfbTjDdthpHNUI7IAelRdfRTnVCaQbcDthxlNjCKJXdupFxDpfN3Zk7RNybY_IHTIuJ6M2pENPOYCreTs44CZU2aGWZaDtwCLAVkoN1ApUSorLenVnHFH_MLhezj3MK1b7hSkipW3nquj537bBCfRhj_bKtd3AHb2Nwo6_1tWqFpFyxZ4vvzwKbYs7JjX9tMmqed2z-7Rh-A-HTmIA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756694655</pqid></control><display><type>article</type><title>Capacity Allocation Strategy Using Virtual Synchronous Compensator for Renewable Energy Stations Based on Fuzzy Chance Constraints</title><source>Publicly Available Content Database</source><creator>Xu, Zhi ; Song, Pengfei ; Yin, Chunya ; Kang, Pengpeng ; Zhai, Baoyu</creator><creatorcontrib>Xu, Zhi ; Song, Pengfei ; Yin, Chunya ; Kang, Pengpeng ; Zhai, Baoyu</creatorcontrib><description>The uncertainty of high penetration of renewable energy brings challenges to the safe and stable operation of a power system; the virtual synchronous compensation (VSCOM) can shift the demand and compensate real-time discrepancy between generation and demand, and can improve the active support ability for the power system. This paper proposes a novel capacity allocation strategy using VSCOM for renewable energy stations based on fuzzy constraints. Firstly, the basic framework of the VSCOM is constructed with energy storage and reactive power generator (SVG) unit. Secondly, the inertia and standby capacity requirements of high penetration of renewable energy system are modeled; on this basis, a capacity allocation model of each sub unit of the VSCOM is developed, and the investment economy and stable support needs are considered. Thirdly, the uncertainty set of wind power output is defined based on the historical data to find a decision that minimizes the worst-case expected where the worst case should be taken. Finally, the simulation results show that the proposed optimal sizing strategy can effectively take advantage of stability and economy, and the VSCOM can meet the inertia support demand of 98.6% of a high proportion of renewable energy systems.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en15249306</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Alternative energy sources ; Analysis ; capacity configuration ; Electric power systems ; Electric utilities ; Electricity distribution ; Energy management systems ; Energy storage ; Optimization algorithms ; Reactive power ; renewable energy station ; Renewable resources ; Supply and demand ; Uncertainty ; virtual synchronous compensator (VSCOM) ; Wind power</subject><ispartof>Energies (Basel), 2022-12, Vol.15 (24), p.9306</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-8497aa60021b8519449af7f34da23795880878579132cda82a6a43f67cbef1223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2756694655/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2756694655?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Xu, Zhi</creatorcontrib><creatorcontrib>Song, Pengfei</creatorcontrib><creatorcontrib>Yin, Chunya</creatorcontrib><creatorcontrib>Kang, Pengpeng</creatorcontrib><creatorcontrib>Zhai, Baoyu</creatorcontrib><title>Capacity Allocation Strategy Using Virtual Synchronous Compensator for Renewable Energy Stations Based on Fuzzy Chance Constraints</title><title>Energies (Basel)</title><description>The uncertainty of high penetration of renewable energy brings challenges to the safe and stable operation of a power system; the virtual synchronous compensation (VSCOM) can shift the demand and compensate real-time discrepancy between generation and demand, and can improve the active support ability for the power system. This paper proposes a novel capacity allocation strategy using VSCOM for renewable energy stations based on fuzzy constraints. Firstly, the basic framework of the VSCOM is constructed with energy storage and reactive power generator (SVG) unit. Secondly, the inertia and standby capacity requirements of high penetration of renewable energy system are modeled; on this basis, a capacity allocation model of each sub unit of the VSCOM is developed, and the investment economy and stable support needs are considered. Thirdly, the uncertainty set of wind power output is defined based on the historical data to find a decision that minimizes the worst-case expected where the worst case should be taken. Finally, the simulation results show that the proposed optimal sizing strategy can effectively take advantage of stability and economy, and the VSCOM can meet the inertia support demand of 98.6% of a high proportion of renewable energy systems.</description><subject>Alternative energy sources</subject><subject>Analysis</subject><subject>capacity configuration</subject><subject>Electric power systems</subject><subject>Electric utilities</subject><subject>Electricity distribution</subject><subject>Energy management systems</subject><subject>Energy storage</subject><subject>Optimization algorithms</subject><subject>Reactive power</subject><subject>renewable energy station</subject><subject>Renewable resources</subject><subject>Supply and demand</subject><subject>Uncertainty</subject><subject>virtual synchronous compensator (VSCOM)</subject><subject>Wind power</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkVFrFDEQxxdRsNS--AkCvglXk8wm2TyeS6uFguBZX8NcNnvNsZecSRbZPvrJTe9ETQgzDPP_zT9M07xl9BpA0w8uMMFbDVS-aC6Y1nLFqIKX_-Wvm6uc97QeAAYAF82vHo9ofVnIepqixeJjIJuSsLjdQh6yDzvy3acy40Q2S7CPKYY4Z9LHw9GFjCUmMtb31QX3E7eTIzfBpSrdlBMrk4-Y3UAq9XZ-elpI_4jBuqoPuU7xoeQ3zasRp-yu_sTL5uH25lv_eXX_5dNdv75fWRC6rLpWK0RJKWfbTjDdthpHNUI7IAelRdfRTnVCaQbcDthxlNjCKJXdupFxDpfN3Zk7RNybY_IHTIuJ6M2pENPOYCreTs44CZU2aGWZaDtwCLAVkoN1ApUSorLenVnHFH_MLhezj3MK1b7hSkipW3nquj537bBCfRhj_bKtd3AHb2Nwo6_1tWqFpFyxZ4vvzwKbYs7JjX9tMmqed2z-7Rh-A-HTmIA</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Xu, Zhi</creator><creator>Song, Pengfei</creator><creator>Yin, Chunya</creator><creator>Kang, Pengpeng</creator><creator>Zhai, Baoyu</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope></search><sort><creationdate>20221201</creationdate><title>Capacity Allocation Strategy Using Virtual Synchronous Compensator for Renewable Energy Stations Based on Fuzzy Chance Constraints</title><author>Xu, Zhi ; Song, Pengfei ; Yin, Chunya ; Kang, Pengpeng ; Zhai, Baoyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-8497aa60021b8519449af7f34da23795880878579132cda82a6a43f67cbef1223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alternative energy sources</topic><topic>Analysis</topic><topic>capacity configuration</topic><topic>Electric power systems</topic><topic>Electric utilities</topic><topic>Electricity distribution</topic><topic>Energy management systems</topic><topic>Energy storage</topic><topic>Optimization algorithms</topic><topic>Reactive power</topic><topic>renewable energy station</topic><topic>Renewable resources</topic><topic>Supply and demand</topic><topic>Uncertainty</topic><topic>virtual synchronous compensator (VSCOM)</topic><topic>Wind power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Zhi</creatorcontrib><creatorcontrib>Song, Pengfei</creatorcontrib><creatorcontrib>Yin, Chunya</creatorcontrib><creatorcontrib>Kang, Pengpeng</creatorcontrib><creatorcontrib>Zhai, Baoyu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Zhi</au><au>Song, Pengfei</au><au>Yin, Chunya</au><au>Kang, Pengpeng</au><au>Zhai, Baoyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Capacity Allocation Strategy Using Virtual Synchronous Compensator for Renewable Energy Stations Based on Fuzzy Chance Constraints</atitle><jtitle>Energies (Basel)</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>15</volume><issue>24</issue><spage>9306</spage><pages>9306-</pages><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>The uncertainty of high penetration of renewable energy brings challenges to the safe and stable operation of a power system; the virtual synchronous compensation (VSCOM) can shift the demand and compensate real-time discrepancy between generation and demand, and can improve the active support ability for the power system. This paper proposes a novel capacity allocation strategy using VSCOM for renewable energy stations based on fuzzy constraints. Firstly, the basic framework of the VSCOM is constructed with energy storage and reactive power generator (SVG) unit. Secondly, the inertia and standby capacity requirements of high penetration of renewable energy system are modeled; on this basis, a capacity allocation model of each sub unit of the VSCOM is developed, and the investment economy and stable support needs are considered. Thirdly, the uncertainty set of wind power output is defined based on the historical data to find a decision that minimizes the worst-case expected where the worst case should be taken. Finally, the simulation results show that the proposed optimal sizing strategy can effectively take advantage of stability and economy, and the VSCOM can meet the inertia support demand of 98.6% of a high proportion of renewable energy systems.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/en15249306</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1073
ispartof Energies (Basel), 2022-12, Vol.15 (24), p.9306
issn 1996-1073
1996-1073
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_e63808d97c15483ea33b5623ce5a7755
source Publicly Available Content Database
subjects Alternative energy sources
Analysis
capacity configuration
Electric power systems
Electric utilities
Electricity distribution
Energy management systems
Energy storage
Optimization algorithms
Reactive power
renewable energy station
Renewable resources
Supply and demand
Uncertainty
virtual synchronous compensator (VSCOM)
Wind power
title Capacity Allocation Strategy Using Virtual Synchronous Compensator for Renewable Energy Stations Based on Fuzzy Chance Constraints
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A36%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Capacity%20Allocation%20Strategy%20Using%20Virtual%20Synchronous%20Compensator%20for%20Renewable%20Energy%20Stations%20Based%20on%20Fuzzy%20Chance%20Constraints&rft.jtitle=Energies%20(Basel)&rft.au=Xu,%20Zhi&rft.date=2022-12-01&rft.volume=15&rft.issue=24&rft.spage=9306&rft.pages=9306-&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en15249306&rft_dat=%3Cgale_doaj_%3EA745602712%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-8497aa60021b8519449af7f34da23795880878579132cda82a6a43f67cbef1223%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2756694655&rft_id=info:pmid/&rft_galeid=A745602712&rfr_iscdi=true