Loading…

HAGR-D: A Novel Approach for Gesture Recognition with Depth Maps

The hand is an important part of the body used to express information through gestures, and its movements can be used in dynamic gesture recognition systems based on computer vision with practical applications, such as medical, games and sign language. Although depth sensors have led to great progre...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2015-11, Vol.15 (11), p.28646-28664
Main Authors: Santos, Diego G, Fernandes, Bruno J T, Bezerra, Byron L D
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c505t-24424dc5e6b392c6cc4cb405fa46616c6fcac17b6940ca151e1ef731ea2a25ad3
cites cdi_FETCH-LOGICAL-c505t-24424dc5e6b392c6cc4cb405fa46616c6fcac17b6940ca151e1ef731ea2a25ad3
container_end_page 28664
container_issue 11
container_start_page 28646
container_title Sensors (Basel, Switzerland)
container_volume 15
creator Santos, Diego G
Fernandes, Bruno J T
Bezerra, Byron L D
description The hand is an important part of the body used to express information through gestures, and its movements can be used in dynamic gesture recognition systems based on computer vision with practical applications, such as medical, games and sign language. Although depth sensors have led to great progress in gesture recognition, hand gesture recognition still is an open problem because of its complexity, which is due to the large number of small articulations in a hand. This paper proposes a novel approach for hand gesture recognition with depth maps generated by the Microsoft Kinect Sensor (Microsoft, Redmond, WA, USA) using a variation of the CIPBR (convex invariant position based on RANSAC) algorithm and a hybrid classifier composed of dynamic time warping (DTW) and Hidden Markov models (HMM), called the hybrid approach for gesture recognition with depth maps (HAGR-D). The experiments show that the proposed model overcomes other algorithms presented in the literature in hand gesture recognition tasks, achieving a classification rate of 97.49% in the MSRGesture3D dataset and 98.43% in the RPPDI dynamic gesture dataset.
doi_str_mv 10.3390/s151128646
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e647882af20f40b1bc7f4a78246a8d1b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e647882af20f40b1bc7f4a78246a8d1b</doaj_id><sourcerecordid>3893987371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c505t-24424dc5e6b392c6cc4cb405fa46616c6fcac17b6940ca151e1ef731ea2a25ad3</originalsourceid><addsrcrecordid>eNqNkl9LHDEUxYO0VN32pR-gDPSlCNPmfzJ9EBe1q2BbkPoc7mSS3VlmJ2MyY_HbG11rtU-FkFxufhzuPRyE3hP8mbEKf0lEEEK15HIH7RFOeakpxa-e1btoP6U1xpQxpt-gXSqFrKike-jobL64LE--FvPiR7hxXTEfhhjArgofYrFwaZyiKy6dDcu-HdvQF7_bcVWcuCHf32FIb9FrD11y7x7fGbr6dvrr-Ky8-Lk4P55flFZgMZaU51kaK5ysWUWttJbbmmPhgUtJpJXegiWqlhXHFvJCjjivGHFAgQpo2Aydb3WbAGszxHYD8dYEaM1DI8SlgTi2tnPGSa60puAp9hzXpLbKc1Cacgm6IXXWOtxqDVO9cY11_RiheyH68qdvV2YZbgxXmLB8ZujTo0AM11M2yWzaZF3XQe_ClAxRSmOcvWb_gTJRYSwEzujHf9B1mGKfXc0U10Ix-kAdbCkbQ0rR-ae5CTb3eTB_85DhD883fUL_BIDdAVuVrQA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1748573250</pqid></control><display><type>article</type><title>HAGR-D: A Novel Approach for Gesture Recognition with Depth Maps</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Santos, Diego G ; Fernandes, Bruno J T ; Bezerra, Byron L D</creator><creatorcontrib>Santos, Diego G ; Fernandes, Bruno J T ; Bezerra, Byron L D</creatorcontrib><description>The hand is an important part of the body used to express information through gestures, and its movements can be used in dynamic gesture recognition systems based on computer vision with practical applications, such as medical, games and sign language. Although depth sensors have led to great progress in gesture recognition, hand gesture recognition still is an open problem because of its complexity, which is due to the large number of small articulations in a hand. This paper proposes a novel approach for hand gesture recognition with depth maps generated by the Microsoft Kinect Sensor (Microsoft, Redmond, WA, USA) using a variation of the CIPBR (convex invariant position based on RANSAC) algorithm and a hybrid classifier composed of dynamic time warping (DTW) and Hidden Markov models (HMM), called the hybrid approach for gesture recognition with depth maps (HAGR-D). The experiments show that the proposed model overcomes other algorithms presented in the literature in hand gesture recognition tasks, achieving a classification rate of 97.49% in the MSRGesture3D dataset and 98.43% in the RPPDI dynamic gesture dataset.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s151128646</identifier><identifier>PMID: 26569262</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Algorithms ; CIPBR ; Databases, Factual ; Datasets ; DTW ; dynamic gesture ; Dynamical systems ; Dynamics ; Gestures ; HCI ; HMM ; Humans ; Image Processing, Computer-Assisted - methods ; Invariants ; Markov models ; Pattern Recognition, Automated - methods ; Recognition ; Sensors ; Sign language</subject><ispartof>Sensors (Basel, Switzerland), 2015-11, Vol.15 (11), p.28646-28664</ispartof><rights>Copyright MDPI AG 2015</rights><rights>2015 by the authors; licensee MDPI, Basel, Switzerland. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c505t-24424dc5e6b392c6cc4cb405fa46616c6fcac17b6940ca151e1ef731ea2a25ad3</citedby><cites>FETCH-LOGICAL-c505t-24424dc5e6b392c6cc4cb405fa46616c6fcac17b6940ca151e1ef731ea2a25ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1748573250/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1748573250?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26569262$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Santos, Diego G</creatorcontrib><creatorcontrib>Fernandes, Bruno J T</creatorcontrib><creatorcontrib>Bezerra, Byron L D</creatorcontrib><title>HAGR-D: A Novel Approach for Gesture Recognition with Depth Maps</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>The hand is an important part of the body used to express information through gestures, and its movements can be used in dynamic gesture recognition systems based on computer vision with practical applications, such as medical, games and sign language. Although depth sensors have led to great progress in gesture recognition, hand gesture recognition still is an open problem because of its complexity, which is due to the large number of small articulations in a hand. This paper proposes a novel approach for hand gesture recognition with depth maps generated by the Microsoft Kinect Sensor (Microsoft, Redmond, WA, USA) using a variation of the CIPBR (convex invariant position based on RANSAC) algorithm and a hybrid classifier composed of dynamic time warping (DTW) and Hidden Markov models (HMM), called the hybrid approach for gesture recognition with depth maps (HAGR-D). The experiments show that the proposed model overcomes other algorithms presented in the literature in hand gesture recognition tasks, achieving a classification rate of 97.49% in the MSRGesture3D dataset and 98.43% in the RPPDI dynamic gesture dataset.</description><subject>Algorithms</subject><subject>CIPBR</subject><subject>Databases, Factual</subject><subject>Datasets</subject><subject>DTW</subject><subject>dynamic gesture</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Gestures</subject><subject>HCI</subject><subject>HMM</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Invariants</subject><subject>Markov models</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Recognition</subject><subject>Sensors</subject><subject>Sign language</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl9LHDEUxYO0VN32pR-gDPSlCNPmfzJ9EBe1q2BbkPoc7mSS3VlmJ2MyY_HbG11rtU-FkFxufhzuPRyE3hP8mbEKf0lEEEK15HIH7RFOeakpxa-e1btoP6U1xpQxpt-gXSqFrKike-jobL64LE--FvPiR7hxXTEfhhjArgofYrFwaZyiKy6dDcu-HdvQF7_bcVWcuCHf32FIb9FrD11y7x7fGbr6dvrr-Ky8-Lk4P55flFZgMZaU51kaK5ysWUWttJbbmmPhgUtJpJXegiWqlhXHFvJCjjivGHFAgQpo2Aydb3WbAGszxHYD8dYEaM1DI8SlgTi2tnPGSa60puAp9hzXpLbKc1Cacgm6IXXWOtxqDVO9cY11_RiheyH68qdvV2YZbgxXmLB8ZujTo0AM11M2yWzaZF3XQe_ClAxRSmOcvWb_gTJRYSwEzujHf9B1mGKfXc0U10Ix-kAdbCkbQ0rR-ae5CTb3eTB_85DhD883fUL_BIDdAVuVrQA</recordid><startdate>20151112</startdate><enddate>20151112</enddate><creator>Santos, Diego G</creator><creator>Fernandes, Bruno J T</creator><creator>Bezerra, Byron L D</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20151112</creationdate><title>HAGR-D: A Novel Approach for Gesture Recognition with Depth Maps</title><author>Santos, Diego G ; Fernandes, Bruno J T ; Bezerra, Byron L D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c505t-24424dc5e6b392c6cc4cb405fa46616c6fcac17b6940ca151e1ef731ea2a25ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>CIPBR</topic><topic>Databases, Factual</topic><topic>Datasets</topic><topic>DTW</topic><topic>dynamic gesture</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Gestures</topic><topic>HCI</topic><topic>HMM</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Invariants</topic><topic>Markov models</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Recognition</topic><topic>Sensors</topic><topic>Sign language</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santos, Diego G</creatorcontrib><creatorcontrib>Fernandes, Bruno J T</creatorcontrib><creatorcontrib>Bezerra, Byron L D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santos, Diego G</au><au>Fernandes, Bruno J T</au><au>Bezerra, Byron L D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HAGR-D: A Novel Approach for Gesture Recognition with Depth Maps</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2015-11-12</date><risdate>2015</risdate><volume>15</volume><issue>11</issue><spage>28646</spage><epage>28664</epage><pages>28646-28664</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>The hand is an important part of the body used to express information through gestures, and its movements can be used in dynamic gesture recognition systems based on computer vision with practical applications, such as medical, games and sign language. Although depth sensors have led to great progress in gesture recognition, hand gesture recognition still is an open problem because of its complexity, which is due to the large number of small articulations in a hand. This paper proposes a novel approach for hand gesture recognition with depth maps generated by the Microsoft Kinect Sensor (Microsoft, Redmond, WA, USA) using a variation of the CIPBR (convex invariant position based on RANSAC) algorithm and a hybrid classifier composed of dynamic time warping (DTW) and Hidden Markov models (HMM), called the hybrid approach for gesture recognition with depth maps (HAGR-D). The experiments show that the proposed model overcomes other algorithms presented in the literature in hand gesture recognition tasks, achieving a classification rate of 97.49% in the MSRGesture3D dataset and 98.43% in the RPPDI dynamic gesture dataset.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>26569262</pmid><doi>10.3390/s151128646</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2015-11, Vol.15 (11), p.28646-28664
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_e647882af20f40b1bc7f4a78246a8d1b
source Publicly Available Content Database; PubMed Central
subjects Algorithms
CIPBR
Databases, Factual
Datasets
DTW
dynamic gesture
Dynamical systems
Dynamics
Gestures
HCI
HMM
Humans
Image Processing, Computer-Assisted - methods
Invariants
Markov models
Pattern Recognition, Automated - methods
Recognition
Sensors
Sign language
title HAGR-D: A Novel Approach for Gesture Recognition with Depth Maps
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T07%3A04%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HAGR-D:%20A%20Novel%20Approach%20for%20Gesture%20Recognition%20with%20Depth%20Maps&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Santos,%20Diego%20G&rft.date=2015-11-12&rft.volume=15&rft.issue=11&rft.spage=28646&rft.epage=28664&rft.pages=28646-28664&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s151128646&rft_dat=%3Cproquest_doaj_%3E3893987371%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c505t-24424dc5e6b392c6cc4cb405fa46616c6fcac17b6940ca151e1ef731ea2a25ad3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1748573250&rft_id=info:pmid/26569262&rfr_iscdi=true