Loading…
HAGR-D: A Novel Approach for Gesture Recognition with Depth Maps
The hand is an important part of the body used to express information through gestures, and its movements can be used in dynamic gesture recognition systems based on computer vision with practical applications, such as medical, games and sign language. Although depth sensors have led to great progre...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2015-11, Vol.15 (11), p.28646-28664 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c505t-24424dc5e6b392c6cc4cb405fa46616c6fcac17b6940ca151e1ef731ea2a25ad3 |
---|---|
cites | cdi_FETCH-LOGICAL-c505t-24424dc5e6b392c6cc4cb405fa46616c6fcac17b6940ca151e1ef731ea2a25ad3 |
container_end_page | 28664 |
container_issue | 11 |
container_start_page | 28646 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 15 |
creator | Santos, Diego G Fernandes, Bruno J T Bezerra, Byron L D |
description | The hand is an important part of the body used to express information through gestures, and its movements can be used in dynamic gesture recognition systems based on computer vision with practical applications, such as medical, games and sign language. Although depth sensors have led to great progress in gesture recognition, hand gesture recognition still is an open problem because of its complexity, which is due to the large number of small articulations in a hand. This paper proposes a novel approach for hand gesture recognition with depth maps generated by the Microsoft Kinect Sensor (Microsoft, Redmond, WA, USA) using a variation of the CIPBR (convex invariant position based on RANSAC) algorithm and a hybrid classifier composed of dynamic time warping (DTW) and Hidden Markov models (HMM), called the hybrid approach for gesture recognition with depth maps (HAGR-D). The experiments show that the proposed model overcomes other algorithms presented in the literature in hand gesture recognition tasks, achieving a classification rate of 97.49% in the MSRGesture3D dataset and 98.43% in the RPPDI dynamic gesture dataset. |
doi_str_mv | 10.3390/s151128646 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e647882af20f40b1bc7f4a78246a8d1b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e647882af20f40b1bc7f4a78246a8d1b</doaj_id><sourcerecordid>3893987371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c505t-24424dc5e6b392c6cc4cb405fa46616c6fcac17b6940ca151e1ef731ea2a25ad3</originalsourceid><addsrcrecordid>eNqNkl9LHDEUxYO0VN32pR-gDPSlCNPmfzJ9EBe1q2BbkPoc7mSS3VlmJ2MyY_HbG11rtU-FkFxufhzuPRyE3hP8mbEKf0lEEEK15HIH7RFOeakpxa-e1btoP6U1xpQxpt-gXSqFrKike-jobL64LE--FvPiR7hxXTEfhhjArgofYrFwaZyiKy6dDcu-HdvQF7_bcVWcuCHf32FIb9FrD11y7x7fGbr6dvrr-Ky8-Lk4P55flFZgMZaU51kaK5ysWUWttJbbmmPhgUtJpJXegiWqlhXHFvJCjjivGHFAgQpo2Aydb3WbAGszxHYD8dYEaM1DI8SlgTi2tnPGSa60puAp9hzXpLbKc1Cacgm6IXXWOtxqDVO9cY11_RiheyH68qdvV2YZbgxXmLB8ZujTo0AM11M2yWzaZF3XQe_ClAxRSmOcvWb_gTJRYSwEzujHf9B1mGKfXc0U10Ix-kAdbCkbQ0rR-ae5CTb3eTB_85DhD883fUL_BIDdAVuVrQA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1748573250</pqid></control><display><type>article</type><title>HAGR-D: A Novel Approach for Gesture Recognition with Depth Maps</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Santos, Diego G ; Fernandes, Bruno J T ; Bezerra, Byron L D</creator><creatorcontrib>Santos, Diego G ; Fernandes, Bruno J T ; Bezerra, Byron L D</creatorcontrib><description>The hand is an important part of the body used to express information through gestures, and its movements can be used in dynamic gesture recognition systems based on computer vision with practical applications, such as medical, games and sign language. Although depth sensors have led to great progress in gesture recognition, hand gesture recognition still is an open problem because of its complexity, which is due to the large number of small articulations in a hand. This paper proposes a novel approach for hand gesture recognition with depth maps generated by the Microsoft Kinect Sensor (Microsoft, Redmond, WA, USA) using a variation of the CIPBR (convex invariant position based on RANSAC) algorithm and a hybrid classifier composed of dynamic time warping (DTW) and Hidden Markov models (HMM), called the hybrid approach for gesture recognition with depth maps (HAGR-D). The experiments show that the proposed model overcomes other algorithms presented in the literature in hand gesture recognition tasks, achieving a classification rate of 97.49% in the MSRGesture3D dataset and 98.43% in the RPPDI dynamic gesture dataset.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s151128646</identifier><identifier>PMID: 26569262</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Algorithms ; CIPBR ; Databases, Factual ; Datasets ; DTW ; dynamic gesture ; Dynamical systems ; Dynamics ; Gestures ; HCI ; HMM ; Humans ; Image Processing, Computer-Assisted - methods ; Invariants ; Markov models ; Pattern Recognition, Automated - methods ; Recognition ; Sensors ; Sign language</subject><ispartof>Sensors (Basel, Switzerland), 2015-11, Vol.15 (11), p.28646-28664</ispartof><rights>Copyright MDPI AG 2015</rights><rights>2015 by the authors; licensee MDPI, Basel, Switzerland. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c505t-24424dc5e6b392c6cc4cb405fa46616c6fcac17b6940ca151e1ef731ea2a25ad3</citedby><cites>FETCH-LOGICAL-c505t-24424dc5e6b392c6cc4cb405fa46616c6fcac17b6940ca151e1ef731ea2a25ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1748573250/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1748573250?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26569262$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Santos, Diego G</creatorcontrib><creatorcontrib>Fernandes, Bruno J T</creatorcontrib><creatorcontrib>Bezerra, Byron L D</creatorcontrib><title>HAGR-D: A Novel Approach for Gesture Recognition with Depth Maps</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>The hand is an important part of the body used to express information through gestures, and its movements can be used in dynamic gesture recognition systems based on computer vision with practical applications, such as medical, games and sign language. Although depth sensors have led to great progress in gesture recognition, hand gesture recognition still is an open problem because of its complexity, which is due to the large number of small articulations in a hand. This paper proposes a novel approach for hand gesture recognition with depth maps generated by the Microsoft Kinect Sensor (Microsoft, Redmond, WA, USA) using a variation of the CIPBR (convex invariant position based on RANSAC) algorithm and a hybrid classifier composed of dynamic time warping (DTW) and Hidden Markov models (HMM), called the hybrid approach for gesture recognition with depth maps (HAGR-D). The experiments show that the proposed model overcomes other algorithms presented in the literature in hand gesture recognition tasks, achieving a classification rate of 97.49% in the MSRGesture3D dataset and 98.43% in the RPPDI dynamic gesture dataset.</description><subject>Algorithms</subject><subject>CIPBR</subject><subject>Databases, Factual</subject><subject>Datasets</subject><subject>DTW</subject><subject>dynamic gesture</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Gestures</subject><subject>HCI</subject><subject>HMM</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Invariants</subject><subject>Markov models</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Recognition</subject><subject>Sensors</subject><subject>Sign language</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl9LHDEUxYO0VN32pR-gDPSlCNPmfzJ9EBe1q2BbkPoc7mSS3VlmJ2MyY_HbG11rtU-FkFxufhzuPRyE3hP8mbEKf0lEEEK15HIH7RFOeakpxa-e1btoP6U1xpQxpt-gXSqFrKike-jobL64LE--FvPiR7hxXTEfhhjArgofYrFwaZyiKy6dDcu-HdvQF7_bcVWcuCHf32FIb9FrD11y7x7fGbr6dvrr-Ky8-Lk4P55flFZgMZaU51kaK5ysWUWttJbbmmPhgUtJpJXegiWqlhXHFvJCjjivGHFAgQpo2Aydb3WbAGszxHYD8dYEaM1DI8SlgTi2tnPGSa60puAp9hzXpLbKc1Cacgm6IXXWOtxqDVO9cY11_RiheyH68qdvV2YZbgxXmLB8ZujTo0AM11M2yWzaZF3XQe_ClAxRSmOcvWb_gTJRYSwEzujHf9B1mGKfXc0U10Ix-kAdbCkbQ0rR-ae5CTb3eTB_85DhD883fUL_BIDdAVuVrQA</recordid><startdate>20151112</startdate><enddate>20151112</enddate><creator>Santos, Diego G</creator><creator>Fernandes, Bruno J T</creator><creator>Bezerra, Byron L D</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20151112</creationdate><title>HAGR-D: A Novel Approach for Gesture Recognition with Depth Maps</title><author>Santos, Diego G ; Fernandes, Bruno J T ; Bezerra, Byron L D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c505t-24424dc5e6b392c6cc4cb405fa46616c6fcac17b6940ca151e1ef731ea2a25ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>CIPBR</topic><topic>Databases, Factual</topic><topic>Datasets</topic><topic>DTW</topic><topic>dynamic gesture</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Gestures</topic><topic>HCI</topic><topic>HMM</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Invariants</topic><topic>Markov models</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Recognition</topic><topic>Sensors</topic><topic>Sign language</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santos, Diego G</creatorcontrib><creatorcontrib>Fernandes, Bruno J T</creatorcontrib><creatorcontrib>Bezerra, Byron L D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santos, Diego G</au><au>Fernandes, Bruno J T</au><au>Bezerra, Byron L D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HAGR-D: A Novel Approach for Gesture Recognition with Depth Maps</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2015-11-12</date><risdate>2015</risdate><volume>15</volume><issue>11</issue><spage>28646</spage><epage>28664</epage><pages>28646-28664</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>The hand is an important part of the body used to express information through gestures, and its movements can be used in dynamic gesture recognition systems based on computer vision with practical applications, such as medical, games and sign language. Although depth sensors have led to great progress in gesture recognition, hand gesture recognition still is an open problem because of its complexity, which is due to the large number of small articulations in a hand. This paper proposes a novel approach for hand gesture recognition with depth maps generated by the Microsoft Kinect Sensor (Microsoft, Redmond, WA, USA) using a variation of the CIPBR (convex invariant position based on RANSAC) algorithm and a hybrid classifier composed of dynamic time warping (DTW) and Hidden Markov models (HMM), called the hybrid approach for gesture recognition with depth maps (HAGR-D). The experiments show that the proposed model overcomes other algorithms presented in the literature in hand gesture recognition tasks, achieving a classification rate of 97.49% in the MSRGesture3D dataset and 98.43% in the RPPDI dynamic gesture dataset.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>26569262</pmid><doi>10.3390/s151128646</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2015-11, Vol.15 (11), p.28646-28664 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_e647882af20f40b1bc7f4a78246a8d1b |
source | Publicly Available Content Database; PubMed Central |
subjects | Algorithms CIPBR Databases, Factual Datasets DTW dynamic gesture Dynamical systems Dynamics Gestures HCI HMM Humans Image Processing, Computer-Assisted - methods Invariants Markov models Pattern Recognition, Automated - methods Recognition Sensors Sign language |
title | HAGR-D: A Novel Approach for Gesture Recognition with Depth Maps |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T07%3A04%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HAGR-D:%20A%20Novel%20Approach%20for%20Gesture%20Recognition%20with%20Depth%20Maps&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Santos,%20Diego%20G&rft.date=2015-11-12&rft.volume=15&rft.issue=11&rft.spage=28646&rft.epage=28664&rft.pages=28646-28664&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s151128646&rft_dat=%3Cproquest_doaj_%3E3893987371%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c505t-24424dc5e6b392c6cc4cb405fa46616c6fcac17b6940ca151e1ef731ea2a25ad3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1748573250&rft_id=info:pmid/26569262&rfr_iscdi=true |