Loading…

Recyclability Definition of Recycled Nanofiltration Membranes through a Life Cycle Perspective and Carbon Footprint Indicator

The direct end-of-life recycling of reverse osmosis membranes (RO) into recycled nanofiltration (r-NF) membranes has been pointed out as a circular technology. For the first time, an environmental analysis of the whole life cycle of r-NF membranes was performed, focused on their usage. The carbon fo...

Full description

Saved in:
Bibliographic Details
Published in:Membranes (Basel) 2022-08, Vol.12 (9), p.854
Main Authors: Senán-Salinas, Jorge, Landaburu-Aguirre, Junkal, García-Pacheco, Raquel, García-Calvo, Eloy
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The direct end-of-life recycling of reverse osmosis membranes (RO) into recycled nanofiltration (r-NF) membranes has been pointed out as a circular technology. For the first time, an environmental analysis of the whole life cycle of r-NF membranes was performed, focused on their usage. The carbon footprint (CF) of NF water treatment processes (Functional Unit: 1 m3 of treated water) with different pressure vessel (PV) designs and energy sources using r-NF and commercial NF-270-400 was quantified. Moreover, to compensate for the lower permeability of the r-NF, two design strategies were assessed: A) an increment in inlet pressure, and B) an increase in the number of modules. The inventory included energy modelling for each design and membrane. The interaction of both strategies with the permeability and service life of r-NF, together with different energy sources, was assessed using a novel hybrid analytical–numerical method. The relevance of energy use at the usage stage was highlighted. Therefore, r-NF permeability is the foremost relevant parameter for the definition of CF. The low impact of the r-NF replacement favoured strategy B. The use of an environmental indicator (CF) made it possible to identify the frontiers of the recyclability and applicability of r-NF membranes.
ISSN:2077-0375
2077-0375
DOI:10.3390/membranes12090854