Loading…

Process engineering of pH tolerant Ustilago cynodontis for efficient itaconic acid production

Ustilago cynodontis ranks among the relatively unknown itaconate production organisms. In comparison to the well-known and established organisms like Aspergillus terreus and Ustilago maydis, genetic engineering and first optimizations for itaconate production were only recently developed for U. cyno...

Full description

Saved in:
Bibliographic Details
Published in:Microbial cell factories 2019-12, Vol.18 (1), p.213-213, Article 213
Main Authors: Hosseinpour Tehrani, Hamed, Saur, Katharina, Tharmasothirajan, Apilaasha, Blank, Lars M, Wierckx, Nick
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c594t-acdc4f024d37d75646c6bf63c5b45099f6a9729d94c4d7bcfb0c4c3deb6110ab3
cites cdi_FETCH-LOGICAL-c594t-acdc4f024d37d75646c6bf63c5b45099f6a9729d94c4d7bcfb0c4c3deb6110ab3
container_end_page 213
container_issue 1
container_start_page 213
container_title Microbial cell factories
container_volume 18
creator Hosseinpour Tehrani, Hamed
Saur, Katharina
Tharmasothirajan, Apilaasha
Blank, Lars M
Wierckx, Nick
description Ustilago cynodontis ranks among the relatively unknown itaconate production organisms. In comparison to the well-known and established organisms like Aspergillus terreus and Ustilago maydis, genetic engineering and first optimizations for itaconate production were only recently developed for U. cynodontis, enabling metabolic and morphological engineering of this acid-tolerant organism for efficient itaconate production. These engineered strains were so far mostly characterized in small scale shaken cultures. In pH-controlled fed-batch experiments an optimum pH of 3.6 could be determined for itaconate production in the morphology-engineered U. cynodontis Δfuz7. With U. cynodontis ∆fuz7 ∆cyp3 P mttA P ria1, optimized for itaconate production through the deletion of an itaconate oxidase and overexpression of rate-limiting production steps, titers up to 82.9 ± 0.8 g L were reached in a high-density pulsed fed-batch fermentation at this pH. The use of a constant glucose feed controlled by in-line glucose analysis increased the yield in the production phase to 0.61 g g , which is 84% of the maximum theoretical pathway yield. Productivity could be improved to a maximum of 1.44 g L h and cell recycling was achieved by repeated-batch application. Here, we characterize engineered U. cynodontis strains in controlled bioreactors and optimize the fermentation process for itaconate production. The results obtained are discussed in a biotechnological context and show the great potential of U. cynodontis as an itaconate producing host.
doi_str_mv 10.1186/s12934-019-1266-y
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e66b2f29af024793aef42730e85e4983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A610303526</galeid><doaj_id>oai_doaj_org_article_e66b2f29af024793aef42730e85e4983</doaj_id><sourcerecordid>A610303526</sourcerecordid><originalsourceid>FETCH-LOGICAL-c594t-acdc4f024d37d75646c6bf63c5b45099f6a9729d94c4d7bcfb0c4c3deb6110ab3</originalsourceid><addsrcrecordid>eNptkl1rFDEUhgdRbK3-AG9kwJt6MTVfk0xuhFLULhQUtZcSMsnJmDKbrElG3H9v1q21K5KLhJPnvCfn5G2a5xidYTzw1xkTSVmHsOww4bzbPmiOMRN9R4ZePrx3Pmqe5HyDEBaDoI-bI4oHiqQcjpuvH1M0kHMLYfIBIPkwtdG1m8u2xBmSDqW9zsXPeoqt2YZoYyg-ty6mFpzzxkMlfNEmBm9abbxtNynaxRQfw9PmkdNzhme3-0lz_e7tl4vL7urD-9XF-VVneslKp401zCHCLBVW9Jxxw0fHqelH1td3Oq6lINJKZpgVo3EjMsxQCyPHGOmRnjSrva6N-kZtkl_rtFVRe_U7ENOkdCrezKCA85E4IvWunpBUg2NEUARDD0wOtGq92WttlnEN1tT-kp4PRA9vgv-mpvhDcYlkL1AVOL0VSPH7Armotc8G5lkHiEtWhBIpGBtIX9GX_6A3cUmhjmpHDVWu9veXmnRtwAcXa12zE1XnvN4j2hNeqbP_UHVZWPv6O-B8jR8kvDpIqEyBn2XSS85q9fnTIYv3rEkx5wTubh4YqZ0X1d6LqnpR7byotjXnxf1B3mX8MR_9Ba4k2Xs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2328957110</pqid></control><display><type>article</type><title>Process engineering of pH tolerant Ustilago cynodontis for efficient itaconic acid production</title><source>Open Access: PubMed Central</source><source>Publicly Available Content (ProQuest)</source><creator>Hosseinpour Tehrani, Hamed ; Saur, Katharina ; Tharmasothirajan, Apilaasha ; Blank, Lars M ; Wierckx, Nick</creator><creatorcontrib>Hosseinpour Tehrani, Hamed ; Saur, Katharina ; Tharmasothirajan, Apilaasha ; Blank, Lars M ; Wierckx, Nick</creatorcontrib><description>Ustilago cynodontis ranks among the relatively unknown itaconate production organisms. In comparison to the well-known and established organisms like Aspergillus terreus and Ustilago maydis, genetic engineering and first optimizations for itaconate production were only recently developed for U. cynodontis, enabling metabolic and morphological engineering of this acid-tolerant organism for efficient itaconate production. These engineered strains were so far mostly characterized in small scale shaken cultures. In pH-controlled fed-batch experiments an optimum pH of 3.6 could be determined for itaconate production in the morphology-engineered U. cynodontis Δfuz7. With U. cynodontis ∆fuz7 ∆cyp3 P mttA P ria1, optimized for itaconate production through the deletion of an itaconate oxidase and overexpression of rate-limiting production steps, titers up to 82.9 ± 0.8 g L were reached in a high-density pulsed fed-batch fermentation at this pH. The use of a constant glucose feed controlled by in-line glucose analysis increased the yield in the production phase to 0.61 g g , which is 84% of the maximum theoretical pathway yield. Productivity could be improved to a maximum of 1.44 g L h and cell recycling was achieved by repeated-batch application. Here, we characterize engineered U. cynodontis strains in controlled bioreactors and optimize the fermentation process for itaconate production. The results obtained are discussed in a biotechnological context and show the great potential of U. cynodontis as an itaconate producing host.</description><identifier>ISSN: 1475-2859</identifier><identifier>EISSN: 1475-2859</identifier><identifier>DOI: 10.1186/s12934-019-1266-y</identifier><identifier>PMID: 31830998</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Acid production ; Acids ; Analysis ; Batch culture ; Bioreactors ; Clonal deletion ; Cytochrome P-450 ; Fermentation ; Genetic Engineering ; Genetically modified organisms ; Glucose ; Hydrogen-Ion Concentration ; Itaconic acid ; Metabolic engineering ; Morphology ; Optimization ; Organisms ; Oxidases ; pH control ; pH effects ; Process engineering ; Process optimization ; Product toxicity ; Production engineering ; Production management ; Productivity ; Strains (organisms) ; Succinates - chemistry ; Succinates - metabolism ; Toxicity ; Ustilago ; Ustilago - chemistry ; Ustilago - genetics ; Ustilago - metabolism ; Ustilago cynodontis</subject><ispartof>Microbial cell factories, 2019-12, Vol.18 (1), p.213-213, Article 213</ispartof><rights>COPYRIGHT 2019 BioMed Central Ltd.</rights><rights>2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c594t-acdc4f024d37d75646c6bf63c5b45099f6a9729d94c4d7bcfb0c4c3deb6110ab3</citedby><cites>FETCH-LOGICAL-c594t-acdc4f024d37d75646c6bf63c5b45099f6a9729d94c4d7bcfb0c4c3deb6110ab3</cites><orcidid>0000-0002-2808-8652 ; 0000-0002-1590-1210</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6909570/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2328957110?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31830998$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hosseinpour Tehrani, Hamed</creatorcontrib><creatorcontrib>Saur, Katharina</creatorcontrib><creatorcontrib>Tharmasothirajan, Apilaasha</creatorcontrib><creatorcontrib>Blank, Lars M</creatorcontrib><creatorcontrib>Wierckx, Nick</creatorcontrib><title>Process engineering of pH tolerant Ustilago cynodontis for efficient itaconic acid production</title><title>Microbial cell factories</title><addtitle>Microb Cell Fact</addtitle><description>Ustilago cynodontis ranks among the relatively unknown itaconate production organisms. In comparison to the well-known and established organisms like Aspergillus terreus and Ustilago maydis, genetic engineering and first optimizations for itaconate production were only recently developed for U. cynodontis, enabling metabolic and morphological engineering of this acid-tolerant organism for efficient itaconate production. These engineered strains were so far mostly characterized in small scale shaken cultures. In pH-controlled fed-batch experiments an optimum pH of 3.6 could be determined for itaconate production in the morphology-engineered U. cynodontis Δfuz7. With U. cynodontis ∆fuz7 ∆cyp3 P mttA P ria1, optimized for itaconate production through the deletion of an itaconate oxidase and overexpression of rate-limiting production steps, titers up to 82.9 ± 0.8 g L were reached in a high-density pulsed fed-batch fermentation at this pH. The use of a constant glucose feed controlled by in-line glucose analysis increased the yield in the production phase to 0.61 g g , which is 84% of the maximum theoretical pathway yield. Productivity could be improved to a maximum of 1.44 g L h and cell recycling was achieved by repeated-batch application. Here, we characterize engineered U. cynodontis strains in controlled bioreactors and optimize the fermentation process for itaconate production. The results obtained are discussed in a biotechnological context and show the great potential of U. cynodontis as an itaconate producing host.</description><subject>Acid production</subject><subject>Acids</subject><subject>Analysis</subject><subject>Batch culture</subject><subject>Bioreactors</subject><subject>Clonal deletion</subject><subject>Cytochrome P-450</subject><subject>Fermentation</subject><subject>Genetic Engineering</subject><subject>Genetically modified organisms</subject><subject>Glucose</subject><subject>Hydrogen-Ion Concentration</subject><subject>Itaconic acid</subject><subject>Metabolic engineering</subject><subject>Morphology</subject><subject>Optimization</subject><subject>Organisms</subject><subject>Oxidases</subject><subject>pH control</subject><subject>pH effects</subject><subject>Process engineering</subject><subject>Process optimization</subject><subject>Product toxicity</subject><subject>Production engineering</subject><subject>Production management</subject><subject>Productivity</subject><subject>Strains (organisms)</subject><subject>Succinates - chemistry</subject><subject>Succinates - metabolism</subject><subject>Toxicity</subject><subject>Ustilago</subject><subject>Ustilago - chemistry</subject><subject>Ustilago - genetics</subject><subject>Ustilago - metabolism</subject><subject>Ustilago cynodontis</subject><issn>1475-2859</issn><issn>1475-2859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkl1rFDEUhgdRbK3-AG9kwJt6MTVfk0xuhFLULhQUtZcSMsnJmDKbrElG3H9v1q21K5KLhJPnvCfn5G2a5xidYTzw1xkTSVmHsOww4bzbPmiOMRN9R4ZePrx3Pmqe5HyDEBaDoI-bI4oHiqQcjpuvH1M0kHMLYfIBIPkwtdG1m8u2xBmSDqW9zsXPeoqt2YZoYyg-ty6mFpzzxkMlfNEmBm9abbxtNynaxRQfw9PmkdNzhme3-0lz_e7tl4vL7urD-9XF-VVneslKp401zCHCLBVW9Jxxw0fHqelH1td3Oq6lINJKZpgVo3EjMsxQCyPHGOmRnjSrva6N-kZtkl_rtFVRe_U7ENOkdCrezKCA85E4IvWunpBUg2NEUARDD0wOtGq92WttlnEN1tT-kp4PRA9vgv-mpvhDcYlkL1AVOL0VSPH7Armotc8G5lkHiEtWhBIpGBtIX9GX_6A3cUmhjmpHDVWu9veXmnRtwAcXa12zE1XnvN4j2hNeqbP_UHVZWPv6O-B8jR8kvDpIqEyBn2XSS85q9fnTIYv3rEkx5wTubh4YqZ0X1d6LqnpR7byotjXnxf1B3mX8MR_9Ba4k2Xs</recordid><startdate>20191212</startdate><enddate>20191212</enddate><creator>Hosseinpour Tehrani, Hamed</creator><creator>Saur, Katharina</creator><creator>Tharmasothirajan, Apilaasha</creator><creator>Blank, Lars M</creator><creator>Wierckx, Nick</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2808-8652</orcidid><orcidid>https://orcid.org/0000-0002-1590-1210</orcidid></search><sort><creationdate>20191212</creationdate><title>Process engineering of pH tolerant Ustilago cynodontis for efficient itaconic acid production</title><author>Hosseinpour Tehrani, Hamed ; Saur, Katharina ; Tharmasothirajan, Apilaasha ; Blank, Lars M ; Wierckx, Nick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c594t-acdc4f024d37d75646c6bf63c5b45099f6a9729d94c4d7bcfb0c4c3deb6110ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acid production</topic><topic>Acids</topic><topic>Analysis</topic><topic>Batch culture</topic><topic>Bioreactors</topic><topic>Clonal deletion</topic><topic>Cytochrome P-450</topic><topic>Fermentation</topic><topic>Genetic Engineering</topic><topic>Genetically modified organisms</topic><topic>Glucose</topic><topic>Hydrogen-Ion Concentration</topic><topic>Itaconic acid</topic><topic>Metabolic engineering</topic><topic>Morphology</topic><topic>Optimization</topic><topic>Organisms</topic><topic>Oxidases</topic><topic>pH control</topic><topic>pH effects</topic><topic>Process engineering</topic><topic>Process optimization</topic><topic>Product toxicity</topic><topic>Production engineering</topic><topic>Production management</topic><topic>Productivity</topic><topic>Strains (organisms)</topic><topic>Succinates - chemistry</topic><topic>Succinates - metabolism</topic><topic>Toxicity</topic><topic>Ustilago</topic><topic>Ustilago - chemistry</topic><topic>Ustilago - genetics</topic><topic>Ustilago - metabolism</topic><topic>Ustilago cynodontis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hosseinpour Tehrani, Hamed</creatorcontrib><creatorcontrib>Saur, Katharina</creatorcontrib><creatorcontrib>Tharmasothirajan, Apilaasha</creatorcontrib><creatorcontrib>Blank, Lars M</creatorcontrib><creatorcontrib>Wierckx, Nick</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medicine (ProQuest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Microbial cell factories</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hosseinpour Tehrani, Hamed</au><au>Saur, Katharina</au><au>Tharmasothirajan, Apilaasha</au><au>Blank, Lars M</au><au>Wierckx, Nick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Process engineering of pH tolerant Ustilago cynodontis for efficient itaconic acid production</atitle><jtitle>Microbial cell factories</jtitle><addtitle>Microb Cell Fact</addtitle><date>2019-12-12</date><risdate>2019</risdate><volume>18</volume><issue>1</issue><spage>213</spage><epage>213</epage><pages>213-213</pages><artnum>213</artnum><issn>1475-2859</issn><eissn>1475-2859</eissn><abstract>Ustilago cynodontis ranks among the relatively unknown itaconate production organisms. In comparison to the well-known and established organisms like Aspergillus terreus and Ustilago maydis, genetic engineering and first optimizations for itaconate production were only recently developed for U. cynodontis, enabling metabolic and morphological engineering of this acid-tolerant organism for efficient itaconate production. These engineered strains were so far mostly characterized in small scale shaken cultures. In pH-controlled fed-batch experiments an optimum pH of 3.6 could be determined for itaconate production in the morphology-engineered U. cynodontis Δfuz7. With U. cynodontis ∆fuz7 ∆cyp3 P mttA P ria1, optimized for itaconate production through the deletion of an itaconate oxidase and overexpression of rate-limiting production steps, titers up to 82.9 ± 0.8 g L were reached in a high-density pulsed fed-batch fermentation at this pH. The use of a constant glucose feed controlled by in-line glucose analysis increased the yield in the production phase to 0.61 g g , which is 84% of the maximum theoretical pathway yield. Productivity could be improved to a maximum of 1.44 g L h and cell recycling was achieved by repeated-batch application. Here, we characterize engineered U. cynodontis strains in controlled bioreactors and optimize the fermentation process for itaconate production. The results obtained are discussed in a biotechnological context and show the great potential of U. cynodontis as an itaconate producing host.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>31830998</pmid><doi>10.1186/s12934-019-1266-y</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2808-8652</orcidid><orcidid>https://orcid.org/0000-0002-1590-1210</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1475-2859
ispartof Microbial cell factories, 2019-12, Vol.18 (1), p.213-213, Article 213
issn 1475-2859
1475-2859
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_e66b2f29af024793aef42730e85e4983
source Open Access: PubMed Central; Publicly Available Content (ProQuest)
subjects Acid production
Acids
Analysis
Batch culture
Bioreactors
Clonal deletion
Cytochrome P-450
Fermentation
Genetic Engineering
Genetically modified organisms
Glucose
Hydrogen-Ion Concentration
Itaconic acid
Metabolic engineering
Morphology
Optimization
Organisms
Oxidases
pH control
pH effects
Process engineering
Process optimization
Product toxicity
Production engineering
Production management
Productivity
Strains (organisms)
Succinates - chemistry
Succinates - metabolism
Toxicity
Ustilago
Ustilago - chemistry
Ustilago - genetics
Ustilago - metabolism
Ustilago cynodontis
title Process engineering of pH tolerant Ustilago cynodontis for efficient itaconic acid production
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T11%3A56%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Process%20engineering%20of%20pH%20tolerant%20Ustilago%20cynodontis%20for%20efficient%20itaconic%20acid%20production&rft.jtitle=Microbial%20cell%20factories&rft.au=Hosseinpour%20Tehrani,%20Hamed&rft.date=2019-12-12&rft.volume=18&rft.issue=1&rft.spage=213&rft.epage=213&rft.pages=213-213&rft.artnum=213&rft.issn=1475-2859&rft.eissn=1475-2859&rft_id=info:doi/10.1186/s12934-019-1266-y&rft_dat=%3Cgale_doaj_%3EA610303526%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c594t-acdc4f024d37d75646c6bf63c5b45099f6a9729d94c4d7bcfb0c4c3deb6110ab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2328957110&rft_id=info:pmid/31830998&rft_galeid=A610303526&rfr_iscdi=true