Loading…
Structural Behaviour of FRP-Reinforced Tubular T-Joint Subjected to Combined In-Plane Bending and Axial Load
In this study, 90 finite-element models are used to explore the behaviour of fibre-reinforced polymer (FRP) reinforced joints under combined in-plane bending (IPB) and axial load (AX). The effects of joint geometry, FRP layer count, and AX levels of the chord or brace are considered. Three typical f...
Saved in:
Published in: | Buildings (Basel) 2024-02, Vol.14 (2), p.412 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, 90 finite-element models are used to explore the behaviour of fibre-reinforced polymer (FRP) reinforced joints under combined in-plane bending (IPB) and axial load (AX). The effects of joint geometry, FRP layer count, and AX levels of the chord or brace are considered. Three typical failure modes are observed: chord plastic failure, brace plastic failure, and brace buckling failure. Increasing the number of FRP layers can ensure that failure is chord-related failure in a ductility manner rather than the unexpectedly brace-related brittle failure. Depending on the stress distribution of fibres, FRP reinforcement can restrict the deformation of joints subjected to complex loading patterns. Moreover, added FRP layers efficiently reduce the effect of brace AX on the IPB resistance. Finally, a modified strength equation is established, including the influence of FRP reinforcement, chord AX, and brace AX. |
---|---|
ISSN: | 2075-5309 2075-5309 |
DOI: | 10.3390/buildings14020412 |