Loading…
Maslinic acid potentiates the anti-tumor activity of tumor necrosis factor α by inhibiting NF-κB signaling pathway
BACKGROUND: Tumor necrosis factor alpha (TNFα) has been used to treat certain tumors in clinic trials. However, the curative effect of TNFα has been undermined by the induced-NF-κB activation in many types of tumor. Maslinic acid (MA), a pharmacological safe natural product, has been known for its i...
Saved in:
Published in: | Molecular cancer 2010-04, Vol.9 (1), p.73-73, Article 73 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | BACKGROUND: Tumor necrosis factor alpha (TNFα) has been used to treat certain tumors in clinic trials. However, the curative effect of TNFα has been undermined by the induced-NF-κB activation in many types of tumor. Maslinic acid (MA), a pharmacological safe natural product, has been known for its important effects as anti-oxidant, anti-inflammatory, and anti-viral activities. The aim of this study was to determine whether MA potentiates the anti-tumor activity of TNFα though the regulation of NF-κB activation. RESULTS: In this study, we demonstrate that MA significantly enhanced TNFα-induced inhibition of pancreatic cancer cell proliferation, invasion, and potentiated TNFα-induced cell apoptosis by suppressing TNFα-induced NF-κB activation in a dose- and time-dependent manner. Addition of MA inhibited TNFα-induced IκBα degradation, p65 phosphorylation, and nuclear translocation. Furthermore, MA decreased the expression levels of NF-κB-regulated genes, including genes involved in tumor cell proliferation (Cyclin D1, COX-2 and c-Myc), apoptosis (Survivin, Bcl-2, Bcl-xl, XIAP, IAP-1), invasion (MMP-9 and ICAM-1), and angiogenesis (VEGF). In athymic nu/nu mouse model, we further demonstrated that MA significantly suppressed pancreatic tumor growth, induced tumor apoptosis, and inhibited NF-κB-regulated anti-apoptotic gene expression, such as Survivin and Bcl-xl. CONCLUSIONS: Our data demonstrate that MA can potentiate the anti-tumor activities of TNFα and inhibit pancreatic tumor growth and invasion by activating caspase-dependent apoptotic pathway and by suppressing NF-κB activation and its downstream gene expression. Therefore, MA together with TNFα could be new promising agents in the treatment of pancreatic cancer. |
---|---|
ISSN: | 1476-4598 1476-4598 |
DOI: | 10.1186/1476-4598-9-73 |