Loading…

Time-frequency time-space long short-term memory networks for image classification of histopathological tissue

Image analysis in histopathology provides insights into the microscopic examination of tissue for disease diagnosis, prognosis, and biomarker discovery. Particularly for cancer research, precise classification of histopathological images is the ultimate objective of the image analysis. Here, the tim...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2021-07, Vol.11 (1), p.13703-13703, Article 13703
Main Author: Pham, Tuan D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c517t-2dffc5a14301c7e1fce0843c8b53e847fa924f41e1a726b02f527114d88901563
cites cdi_FETCH-LOGICAL-c517t-2dffc5a14301c7e1fce0843c8b53e847fa924f41e1a726b02f527114d88901563
container_end_page 13703
container_issue 1
container_start_page 13703
container_title Scientific reports
container_volume 11
creator Pham, Tuan D.
description Image analysis in histopathology provides insights into the microscopic examination of tissue for disease diagnosis, prognosis, and biomarker discovery. Particularly for cancer research, precise classification of histopathological images is the ultimate objective of the image analysis. Here, the time-frequency time-space long short-term memory network (TF-TS LSTM) developed for classification of time series is applied for classifying histopathological images. The deep learning is empowered by the use of sequential time-frequency and time-space features extracted from the images. Furthermore, unlike conventional classification practice, a strategy for class modeling is designed to leverage the learning power of the TF-TS LSTM. Tests on several datasets of histopathological images of haematoxylin-and-eosin and immunohistochemistry stains demonstrate the strong capability of the artificial intelligence (AI)-based approach for producing very accurate classification results. The proposed approach has the potential to be an AI tool for robust classification of histopathological images.
doi_str_mv 10.1038/s41598-021-93160-5
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e6e6d54865f14d7988830a92e14f3ebc</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e6e6d54865f14d7988830a92e14f3ebc</doaj_id><sourcerecordid>2548410694</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-2dffc5a14301c7e1fce0843c8b53e847fa924f41e1a726b02f527114d88901563</originalsourceid><addsrcrecordid>eNp9kktv1DAUhSMEolXpH2AViQ2bUF-_4myQUMWjUiU2ZW15nOuMh8QebA9o_j2epoKWBd7Yvj7389HVaZrXQN4BYeoqcxCD6giFbmAgSSeeNeeUcNFRRunzR-ez5jLnHalL0IHD8LI5Y5wCkL4_b8KdX7BzCX8cMNhjW07XvDcW2zmGqc3bmEpXMC3tgktMxzZg-RXT99y6mFq_mAlbO5ucvfPWFB9DG1279bnEvSnbOMep1ucKzvmAr5oXzswZLx_2i-bbp49311-626-fb64_3HZWQF86OjpnhQHOCNgewVkkijOrNoKh4r0zA-WOA4LpqdwQ6gTtAfio1EBASHbR3KzcMZqd3qfqMx11NF7fF2KatEnF2xk1SpSj4EoKVwH9oJRipPIRuGO4sZX1fmXtD5sFR4uhJDM_gT59CX6rp_hTK8oHyUQFvH0ApFjHnItefLY4zyZgPGRN6-8ciBx4lb75R7qLhxTqqE6qHqSUQlUVXVU2xZwTuj9mgOhTOvSaDl3Toe_ToU8u2NqUqzhMmP6i_9P1G1csvOI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2547166658</pqid></control><display><type>article</type><title>Time-frequency time-space long short-term memory networks for image classification of histopathological tissue</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Pham, Tuan D.</creator><creatorcontrib>Pham, Tuan D.</creatorcontrib><description>Image analysis in histopathology provides insights into the microscopic examination of tissue for disease diagnosis, prognosis, and biomarker discovery. Particularly for cancer research, precise classification of histopathological images is the ultimate objective of the image analysis. Here, the time-frequency time-space long short-term memory network (TF-TS LSTM) developed for classification of time series is applied for classifying histopathological images. The deep learning is empowered by the use of sequential time-frequency and time-space features extracted from the images. Furthermore, unlike conventional classification practice, a strategy for class modeling is designed to leverage the learning power of the TF-TS LSTM. Tests on several datasets of histopathological images of haematoxylin-and-eosin and immunohistochemistry stains demonstrate the strong capability of the artificial intelligence (AI)-based approach for producing very accurate classification results. The proposed approach has the potential to be an AI tool for robust classification of histopathological images.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-021-93160-5</identifier><identifier>PMID: 34211077</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/1647 ; 639/705 ; Artificial intelligence ; Cancer research ; Classification ; Deep learning ; Histopathology ; Humanities and Social Sciences ; Image processing ; Immunohistochemistry ; Long short-term memory ; multidisciplinary ; Science ; Science (multidisciplinary) ; Short term</subject><ispartof>Scientific reports, 2021-07, Vol.11 (1), p.13703-13703, Article 13703</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-2dffc5a14301c7e1fce0843c8b53e847fa924f41e1a726b02f527114d88901563</citedby><cites>FETCH-LOGICAL-c517t-2dffc5a14301c7e1fce0843c8b53e847fa924f41e1a726b02f527114d88901563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2547166658/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2547166658?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Pham, Tuan D.</creatorcontrib><title>Time-frequency time-space long short-term memory networks for image classification of histopathological tissue</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><description>Image analysis in histopathology provides insights into the microscopic examination of tissue for disease diagnosis, prognosis, and biomarker discovery. Particularly for cancer research, precise classification of histopathological images is the ultimate objective of the image analysis. Here, the time-frequency time-space long short-term memory network (TF-TS LSTM) developed for classification of time series is applied for classifying histopathological images. The deep learning is empowered by the use of sequential time-frequency and time-space features extracted from the images. Furthermore, unlike conventional classification practice, a strategy for class modeling is designed to leverage the learning power of the TF-TS LSTM. Tests on several datasets of histopathological images of haematoxylin-and-eosin and immunohistochemistry stains demonstrate the strong capability of the artificial intelligence (AI)-based approach for producing very accurate classification results. The proposed approach has the potential to be an AI tool for robust classification of histopathological images.</description><subject>631/1647</subject><subject>639/705</subject><subject>Artificial intelligence</subject><subject>Cancer research</subject><subject>Classification</subject><subject>Deep learning</subject><subject>Histopathology</subject><subject>Humanities and Social Sciences</subject><subject>Image processing</subject><subject>Immunohistochemistry</subject><subject>Long short-term memory</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Short term</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kktv1DAUhSMEolXpH2AViQ2bUF-_4myQUMWjUiU2ZW15nOuMh8QebA9o_j2epoKWBd7Yvj7389HVaZrXQN4BYeoqcxCD6giFbmAgSSeeNeeUcNFRRunzR-ez5jLnHalL0IHD8LI5Y5wCkL4_b8KdX7BzCX8cMNhjW07XvDcW2zmGqc3bmEpXMC3tgktMxzZg-RXT99y6mFq_mAlbO5ucvfPWFB9DG1279bnEvSnbOMep1ucKzvmAr5oXzswZLx_2i-bbp49311-626-fb64_3HZWQF86OjpnhQHOCNgewVkkijOrNoKh4r0zA-WOA4LpqdwQ6gTtAfio1EBASHbR3KzcMZqd3qfqMx11NF7fF2KatEnF2xk1SpSj4EoKVwH9oJRipPIRuGO4sZX1fmXtD5sFR4uhJDM_gT59CX6rp_hTK8oHyUQFvH0ApFjHnItefLY4zyZgPGRN6-8ciBx4lb75R7qLhxTqqE6qHqSUQlUVXVU2xZwTuj9mgOhTOvSaDl3Toe_ToU8u2NqUqzhMmP6i_9P1G1csvOI</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Pham, Tuan D.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20210701</creationdate><title>Time-frequency time-space long short-term memory networks for image classification of histopathological tissue</title><author>Pham, Tuan D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-2dffc5a14301c7e1fce0843c8b53e847fa924f41e1a726b02f527114d88901563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/1647</topic><topic>639/705</topic><topic>Artificial intelligence</topic><topic>Cancer research</topic><topic>Classification</topic><topic>Deep learning</topic><topic>Histopathology</topic><topic>Humanities and Social Sciences</topic><topic>Image processing</topic><topic>Immunohistochemistry</topic><topic>Long short-term memory</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Short term</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pham, Tuan D.</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pham, Tuan D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-frequency time-space long short-term memory networks for image classification of histopathological tissue</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>11</volume><issue>1</issue><spage>13703</spage><epage>13703</epage><pages>13703-13703</pages><artnum>13703</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Image analysis in histopathology provides insights into the microscopic examination of tissue for disease diagnosis, prognosis, and biomarker discovery. Particularly for cancer research, precise classification of histopathological images is the ultimate objective of the image analysis. Here, the time-frequency time-space long short-term memory network (TF-TS LSTM) developed for classification of time series is applied for classifying histopathological images. The deep learning is empowered by the use of sequential time-frequency and time-space features extracted from the images. Furthermore, unlike conventional classification practice, a strategy for class modeling is designed to leverage the learning power of the TF-TS LSTM. Tests on several datasets of histopathological images of haematoxylin-and-eosin and immunohistochemistry stains demonstrate the strong capability of the artificial intelligence (AI)-based approach for producing very accurate classification results. The proposed approach has the potential to be an AI tool for robust classification of histopathological images.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34211077</pmid><doi>10.1038/s41598-021-93160-5</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2021-07, Vol.11 (1), p.13703-13703, Article 13703
issn 2045-2322
2045-2322
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_e6e6d54865f14d7988830a92e14f3ebc
source Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 631/1647
639/705
Artificial intelligence
Cancer research
Classification
Deep learning
Histopathology
Humanities and Social Sciences
Image processing
Immunohistochemistry
Long short-term memory
multidisciplinary
Science
Science (multidisciplinary)
Short term
title Time-frequency time-space long short-term memory networks for image classification of histopathological tissue
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T17%3A59%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-frequency%20time-space%20long%20short-term%20memory%20networks%20for%20image%20classification%20of%20histopathological%20tissue&rft.jtitle=Scientific%20reports&rft.au=Pham,%20Tuan%20D.&rft.date=2021-07-01&rft.volume=11&rft.issue=1&rft.spage=13703&rft.epage=13703&rft.pages=13703-13703&rft.artnum=13703&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-021-93160-5&rft_dat=%3Cproquest_doaj_%3E2548410694%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c517t-2dffc5a14301c7e1fce0843c8b53e847fa924f41e1a726b02f527114d88901563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2547166658&rft_id=info:pmid/34211077&rfr_iscdi=true