Loading…

In silico EsxG EsxH rational epitope selection: Candidate epitopes for vaccine design against pulmonary tuberculosis

Rational design of new vaccines against pulmonary tuberculosis is imperative. Early secreted antigens (Esx) G and H are involved in metal uptake, drug resistance, and immune response evasion. These characteristics make it an ideal target for rational vaccine development. The aim of this study is to...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2023-01, Vol.18 (4), p.e0284264
Main Authors: Constanza Estefania Martinez-Olivares, Rogelio Hernández-Pando, Edgar Mixcoha
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Rational design of new vaccines against pulmonary tuberculosis is imperative. Early secreted antigens (Esx) G and H are involved in metal uptake, drug resistance, and immune response evasion. These characteristics make it an ideal target for rational vaccine development. The aim of this study is to show the rational design of epitope-based peptide vaccines by using bioinformatics and structural vaccinology tools. A total of 4.15 μs of Molecular Dynamics simulations were carried out to describe the behavior in solution of heterodimer, single epitopes, and epitopes loaded into MHC-II complexes. In order to predict T and B cell epitopes for antigenic activation, bioinformatic tools were used. Hence, we propose three epitopes with the potential to design pulmonary tuberculosis vaccines. The possible use of the proposed epitopes includes subunit vaccines, as a booster in BCG vaccination to improve its immune response, as well as the generation of antibodies that interfere with the Mycobacterium tuberculosis homeostasis, affecting its survival.
ISSN:1932-6203
DOI:10.1371/journal.pone.0284264