Loading…

Implementation of Nanopore sequencing as a pragmatic workflow for copy number variant confirmation in the clinic

Diagnosis of rare genetic diseases can be a long, expensive and complex process, involving an array of tests in the hope of obtaining an actionable result. Long-read sequencing platforms offer the opportunity to make definitive molecular diagnoses using a single assay capable of detecting variants,...

Full description

Saved in:
Bibliographic Details
Published in:Journal of translational medicine 2023-06, Vol.21 (1), p.378-378, Article 378
Main Authors: Greer, Stephanie U, Botello, Jacquelin, Hongo, Donna, Levy, Brynn, Shah, Premal, Rabinowitz, Matthew, Miller, Danny E, Im, Kate, Kumar, Akash
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c564t-6bb9316da3ed414a66cfdc90dadd408683593c457da8590a9182d516e75d94003
cites cdi_FETCH-LOGICAL-c564t-6bb9316da3ed414a66cfdc90dadd408683593c457da8590a9182d516e75d94003
container_end_page 378
container_issue 1
container_start_page 378
container_title Journal of translational medicine
container_volume 21
creator Greer, Stephanie U
Botello, Jacquelin
Hongo, Donna
Levy, Brynn
Shah, Premal
Rabinowitz, Matthew
Miller, Danny E
Im, Kate
Kumar, Akash
description Diagnosis of rare genetic diseases can be a long, expensive and complex process, involving an array of tests in the hope of obtaining an actionable result. Long-read sequencing platforms offer the opportunity to make definitive molecular diagnoses using a single assay capable of detecting variants, characterizing methylation patterns, resolving complex rearrangements, and assigning findings to long-range haplotypes. Here, we demonstrate the clinical utility of Nanopore long-read sequencing by validating a confirmatory test for copy number variants (CNVs) in neurodevelopmental disorders and illustrate the broader applications of this platform to assess genomic features with significant clinical implications. We used adaptive sampling on the Oxford Nanopore platform to sequence 25 genomic DNA samples and 5 blood samples collected from patients with known or false-positive copy number changes originally detected using short-read sequencing. Across the 30 samples (a total of 50 with replicates), we assayed 35 known unique CNVs (a total of 55 with replicates) and one false-positive CNV, ranging in size from 40 kb to 155 Mb, and assessed the presence or absence of suspected CNVs using normalized read depth. Across 50 samples (including replicates) sequenced on individual MinION flow cells, we achieved an average on-target mean depth of 9.5X and an average on-target read length of 4805 bp. Using a custom read depth-based analysis, we successfully confirmed the presence of all 55 known CNVs (including replicates) and the absence of one false-positive CNV. Using the same CNV-targeted data, we compared genotypes of single nucleotide variant loci to verify that no sample mix-ups occurred between assays. For one case, we also used methylation detection and phasing to investigate the parental origin of a 15q11.2-q13 duplication with implications for clinical prognosis. We present an assay that efficiently targets genomic regions to confirm clinically relevant CNVs with a concordance rate of 100%. Furthermore, we demonstrate how integration of genotype, methylation, and phasing data from the Nanopore sequencing platform can potentially simplify and shorten the diagnostic odyssey.
doi_str_mv 10.1186/s12967-023-04243-y
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e6f7c74520a941a0857be3d702c02e98</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A752566614</galeid><doaj_id>oai_doaj_org_article_e6f7c74520a941a0857be3d702c02e98</doaj_id><sourcerecordid>A752566614</sourcerecordid><originalsourceid>FETCH-LOGICAL-c564t-6bb9316da3ed414a66cfdc90dadd408683593c457da8590a9182d516e75d94003</originalsourceid><addsrcrecordid>eNptkktv1DAUhSMEoqXwB1ggS2zYpPjteIWqisdIFWxgbd2xnamHxA52ptX8ezxNKR2EsnB0fe5n3-PTNK8JPiekk-8LoVqqFlPWYk45a_dPmlPClW5Fp-TTR_8nzYtSthhTLrh-3pwwxTDRipw202qcBj_6OMMcUkSpR18hpillj4r_tfPRhrhBUBCgKcNmrDKLblP-2Q_pFvUpI5umPYq7ce0zuoEcIM61FvuQx4UZIpqvPbJDiMG-bJ71MBT_6n49a358-vj98kt79e3z6vLiqrVC8rmV67VmRDpg3nHCQUrbO6uxA-c47mTHhGaWC-WgExqDJh11gkivhNMcY3bWrBauS7A1Uw4j5L1JEMxdIeWNgVxnGbzxsldWcUErhhPAnVBrz5zC1GLqdVdZHxbWtFuP3tnqVobhCHq8E8O12aQbQzAVquOyEt7dE3KqppbZjKFYPwwQfdoVQzvKpRZEHy7-9h_pNu1yrF4dVIoQxan-q9pAnSDEPtWD7QFqLpSgQkpJeFWd_0dVP-fHUN_I96HWjxro0mBzKiX7_mFIgs0hdGYJnamhM3ehM_va9OaxPQ8tf1LGfgNTj9Jm</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2827117429</pqid></control><display><type>article</type><title>Implementation of Nanopore sequencing as a pragmatic workflow for copy number variant confirmation in the clinic</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Greer, Stephanie U ; Botello, Jacquelin ; Hongo, Donna ; Levy, Brynn ; Shah, Premal ; Rabinowitz, Matthew ; Miller, Danny E ; Im, Kate ; Kumar, Akash</creator><creatorcontrib>Greer, Stephanie U ; Botello, Jacquelin ; Hongo, Donna ; Levy, Brynn ; Shah, Premal ; Rabinowitz, Matthew ; Miller, Danny E ; Im, Kate ; Kumar, Akash</creatorcontrib><description>Diagnosis of rare genetic diseases can be a long, expensive and complex process, involving an array of tests in the hope of obtaining an actionable result. Long-read sequencing platforms offer the opportunity to make definitive molecular diagnoses using a single assay capable of detecting variants, characterizing methylation patterns, resolving complex rearrangements, and assigning findings to long-range haplotypes. Here, we demonstrate the clinical utility of Nanopore long-read sequencing by validating a confirmatory test for copy number variants (CNVs) in neurodevelopmental disorders and illustrate the broader applications of this platform to assess genomic features with significant clinical implications. We used adaptive sampling on the Oxford Nanopore platform to sequence 25 genomic DNA samples and 5 blood samples collected from patients with known or false-positive copy number changes originally detected using short-read sequencing. Across the 30 samples (a total of 50 with replicates), we assayed 35 known unique CNVs (a total of 55 with replicates) and one false-positive CNV, ranging in size from 40 kb to 155 Mb, and assessed the presence or absence of suspected CNVs using normalized read depth. Across 50 samples (including replicates) sequenced on individual MinION flow cells, we achieved an average on-target mean depth of 9.5X and an average on-target read length of 4805 bp. Using a custom read depth-based analysis, we successfully confirmed the presence of all 55 known CNVs (including replicates) and the absence of one false-positive CNV. Using the same CNV-targeted data, we compared genotypes of single nucleotide variant loci to verify that no sample mix-ups occurred between assays. For one case, we also used methylation detection and phasing to investigate the parental origin of a 15q11.2-q13 duplication with implications for clinical prognosis. We present an assay that efficiently targets genomic regions to confirm clinically relevant CNVs with a concordance rate of 100%. Furthermore, we demonstrate how integration of genotype, methylation, and phasing data from the Nanopore sequencing platform can potentially simplify and shorten the diagnostic odyssey.</description><identifier>ISSN: 1479-5876</identifier><identifier>EISSN: 1479-5876</identifier><identifier>DOI: 10.1186/s12967-023-04243-y</identifier><identifier>PMID: 37301971</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Adaptive sampling ; Analysis ; Bioinformatics ; Chromosomes ; Clinical testing ; Copy number ; Copy number variants ; Copy number variations ; DNA Copy Number Variations - genetics ; DNA methylation ; DNA sequencing ; Genetic disorders ; Genetic testing ; Genomes ; Genomics ; Genotypes ; Haplotypes ; Health aspects ; High-Throughput Nucleotide Sequencing ; Humans ; Long-read sequencing ; Methylation ; Nanopore Sequencing ; Neurodevelopmental disorders ; Nucleotide sequence ; Nucleotide sequencing ; Oxford Nanopore Technologies ; Sequence Analysis, DNA ; Standard deviation ; Workflow</subject><ispartof>Journal of translational medicine, 2023-06, Vol.21 (1), p.378-378, Article 378</ispartof><rights>2023. The Author(s).</rights><rights>COPYRIGHT 2023 BioMed Central Ltd.</rights><rights>2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c564t-6bb9316da3ed414a66cfdc90dadd408683593c457da8590a9182d516e75d94003</citedby><cites>FETCH-LOGICAL-c564t-6bb9316da3ed414a66cfdc90dadd408683593c457da8590a9182d516e75d94003</cites><orcidid>0000-0001-9442-3597</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10257846/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2827117429?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37301971$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Greer, Stephanie U</creatorcontrib><creatorcontrib>Botello, Jacquelin</creatorcontrib><creatorcontrib>Hongo, Donna</creatorcontrib><creatorcontrib>Levy, Brynn</creatorcontrib><creatorcontrib>Shah, Premal</creatorcontrib><creatorcontrib>Rabinowitz, Matthew</creatorcontrib><creatorcontrib>Miller, Danny E</creatorcontrib><creatorcontrib>Im, Kate</creatorcontrib><creatorcontrib>Kumar, Akash</creatorcontrib><title>Implementation of Nanopore sequencing as a pragmatic workflow for copy number variant confirmation in the clinic</title><title>Journal of translational medicine</title><addtitle>J Transl Med</addtitle><description>Diagnosis of rare genetic diseases can be a long, expensive and complex process, involving an array of tests in the hope of obtaining an actionable result. Long-read sequencing platforms offer the opportunity to make definitive molecular diagnoses using a single assay capable of detecting variants, characterizing methylation patterns, resolving complex rearrangements, and assigning findings to long-range haplotypes. Here, we demonstrate the clinical utility of Nanopore long-read sequencing by validating a confirmatory test for copy number variants (CNVs) in neurodevelopmental disorders and illustrate the broader applications of this platform to assess genomic features with significant clinical implications. We used adaptive sampling on the Oxford Nanopore platform to sequence 25 genomic DNA samples and 5 blood samples collected from patients with known or false-positive copy number changes originally detected using short-read sequencing. Across the 30 samples (a total of 50 with replicates), we assayed 35 known unique CNVs (a total of 55 with replicates) and one false-positive CNV, ranging in size from 40 kb to 155 Mb, and assessed the presence or absence of suspected CNVs using normalized read depth. Across 50 samples (including replicates) sequenced on individual MinION flow cells, we achieved an average on-target mean depth of 9.5X and an average on-target read length of 4805 bp. Using a custom read depth-based analysis, we successfully confirmed the presence of all 55 known CNVs (including replicates) and the absence of one false-positive CNV. Using the same CNV-targeted data, we compared genotypes of single nucleotide variant loci to verify that no sample mix-ups occurred between assays. For one case, we also used methylation detection and phasing to investigate the parental origin of a 15q11.2-q13 duplication with implications for clinical prognosis. We present an assay that efficiently targets genomic regions to confirm clinically relevant CNVs with a concordance rate of 100%. Furthermore, we demonstrate how integration of genotype, methylation, and phasing data from the Nanopore sequencing platform can potentially simplify and shorten the diagnostic odyssey.</description><subject>Adaptive sampling</subject><subject>Analysis</subject><subject>Bioinformatics</subject><subject>Chromosomes</subject><subject>Clinical testing</subject><subject>Copy number</subject><subject>Copy number variants</subject><subject>Copy number variations</subject><subject>DNA Copy Number Variations - genetics</subject><subject>DNA methylation</subject><subject>DNA sequencing</subject><subject>Genetic disorders</subject><subject>Genetic testing</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genotypes</subject><subject>Haplotypes</subject><subject>Health aspects</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Humans</subject><subject>Long-read sequencing</subject><subject>Methylation</subject><subject>Nanopore Sequencing</subject><subject>Neurodevelopmental disorders</subject><subject>Nucleotide sequence</subject><subject>Nucleotide sequencing</subject><subject>Oxford Nanopore Technologies</subject><subject>Sequence Analysis, DNA</subject><subject>Standard deviation</subject><subject>Workflow</subject><issn>1479-5876</issn><issn>1479-5876</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkktv1DAUhSMEoqXwB1ggS2zYpPjteIWqisdIFWxgbd2xnamHxA52ptX8ezxNKR2EsnB0fe5n3-PTNK8JPiekk-8LoVqqFlPWYk45a_dPmlPClW5Fp-TTR_8nzYtSthhTLrh-3pwwxTDRipw202qcBj_6OMMcUkSpR18hpillj4r_tfPRhrhBUBCgKcNmrDKLblP-2Q_pFvUpI5umPYq7ce0zuoEcIM61FvuQx4UZIpqvPbJDiMG-bJ71MBT_6n49a358-vj98kt79e3z6vLiqrVC8rmV67VmRDpg3nHCQUrbO6uxA-c47mTHhGaWC-WgExqDJh11gkivhNMcY3bWrBauS7A1Uw4j5L1JEMxdIeWNgVxnGbzxsldWcUErhhPAnVBrz5zC1GLqdVdZHxbWtFuP3tnqVobhCHq8E8O12aQbQzAVquOyEt7dE3KqppbZjKFYPwwQfdoVQzvKpRZEHy7-9h_pNu1yrF4dVIoQxan-q9pAnSDEPtWD7QFqLpSgQkpJeFWd_0dVP-fHUN_I96HWjxro0mBzKiX7_mFIgs0hdGYJnamhM3ehM_va9OaxPQ8tf1LGfgNTj9Jm</recordid><startdate>20230610</startdate><enddate>20230610</enddate><creator>Greer, Stephanie U</creator><creator>Botello, Jacquelin</creator><creator>Hongo, Donna</creator><creator>Levy, Brynn</creator><creator>Shah, Premal</creator><creator>Rabinowitz, Matthew</creator><creator>Miller, Danny E</creator><creator>Im, Kate</creator><creator>Kumar, Akash</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H94</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9442-3597</orcidid></search><sort><creationdate>20230610</creationdate><title>Implementation of Nanopore sequencing as a pragmatic workflow for copy number variant confirmation in the clinic</title><author>Greer, Stephanie U ; Botello, Jacquelin ; Hongo, Donna ; Levy, Brynn ; Shah, Premal ; Rabinowitz, Matthew ; Miller, Danny E ; Im, Kate ; Kumar, Akash</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c564t-6bb9316da3ed414a66cfdc90dadd408683593c457da8590a9182d516e75d94003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptive sampling</topic><topic>Analysis</topic><topic>Bioinformatics</topic><topic>Chromosomes</topic><topic>Clinical testing</topic><topic>Copy number</topic><topic>Copy number variants</topic><topic>Copy number variations</topic><topic>DNA Copy Number Variations - genetics</topic><topic>DNA methylation</topic><topic>DNA sequencing</topic><topic>Genetic disorders</topic><topic>Genetic testing</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genotypes</topic><topic>Haplotypes</topic><topic>Health aspects</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Humans</topic><topic>Long-read sequencing</topic><topic>Methylation</topic><topic>Nanopore Sequencing</topic><topic>Neurodevelopmental disorders</topic><topic>Nucleotide sequence</topic><topic>Nucleotide sequencing</topic><topic>Oxford Nanopore Technologies</topic><topic>Sequence Analysis, DNA</topic><topic>Standard deviation</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Greer, Stephanie U</creatorcontrib><creatorcontrib>Botello, Jacquelin</creatorcontrib><creatorcontrib>Hongo, Donna</creatorcontrib><creatorcontrib>Levy, Brynn</creatorcontrib><creatorcontrib>Shah, Premal</creatorcontrib><creatorcontrib>Rabinowitz, Matthew</creatorcontrib><creatorcontrib>Miller, Danny E</creatorcontrib><creatorcontrib>Im, Kate</creatorcontrib><creatorcontrib>Kumar, Akash</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of translational medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Greer, Stephanie U</au><au>Botello, Jacquelin</au><au>Hongo, Donna</au><au>Levy, Brynn</au><au>Shah, Premal</au><au>Rabinowitz, Matthew</au><au>Miller, Danny E</au><au>Im, Kate</au><au>Kumar, Akash</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implementation of Nanopore sequencing as a pragmatic workflow for copy number variant confirmation in the clinic</atitle><jtitle>Journal of translational medicine</jtitle><addtitle>J Transl Med</addtitle><date>2023-06-10</date><risdate>2023</risdate><volume>21</volume><issue>1</issue><spage>378</spage><epage>378</epage><pages>378-378</pages><artnum>378</artnum><issn>1479-5876</issn><eissn>1479-5876</eissn><abstract>Diagnosis of rare genetic diseases can be a long, expensive and complex process, involving an array of tests in the hope of obtaining an actionable result. Long-read sequencing platforms offer the opportunity to make definitive molecular diagnoses using a single assay capable of detecting variants, characterizing methylation patterns, resolving complex rearrangements, and assigning findings to long-range haplotypes. Here, we demonstrate the clinical utility of Nanopore long-read sequencing by validating a confirmatory test for copy number variants (CNVs) in neurodevelopmental disorders and illustrate the broader applications of this platform to assess genomic features with significant clinical implications. We used adaptive sampling on the Oxford Nanopore platform to sequence 25 genomic DNA samples and 5 blood samples collected from patients with known or false-positive copy number changes originally detected using short-read sequencing. Across the 30 samples (a total of 50 with replicates), we assayed 35 known unique CNVs (a total of 55 with replicates) and one false-positive CNV, ranging in size from 40 kb to 155 Mb, and assessed the presence or absence of suspected CNVs using normalized read depth. Across 50 samples (including replicates) sequenced on individual MinION flow cells, we achieved an average on-target mean depth of 9.5X and an average on-target read length of 4805 bp. Using a custom read depth-based analysis, we successfully confirmed the presence of all 55 known CNVs (including replicates) and the absence of one false-positive CNV. Using the same CNV-targeted data, we compared genotypes of single nucleotide variant loci to verify that no sample mix-ups occurred between assays. For one case, we also used methylation detection and phasing to investigate the parental origin of a 15q11.2-q13 duplication with implications for clinical prognosis. We present an assay that efficiently targets genomic regions to confirm clinically relevant CNVs with a concordance rate of 100%. Furthermore, we demonstrate how integration of genotype, methylation, and phasing data from the Nanopore sequencing platform can potentially simplify and shorten the diagnostic odyssey.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>37301971</pmid><doi>10.1186/s12967-023-04243-y</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9442-3597</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1479-5876
ispartof Journal of translational medicine, 2023-06, Vol.21 (1), p.378-378, Article 378
issn 1479-5876
1479-5876
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_e6f7c74520a941a0857be3d702c02e98
source Publicly Available Content (ProQuest); PubMed Central
subjects Adaptive sampling
Analysis
Bioinformatics
Chromosomes
Clinical testing
Copy number
Copy number variants
Copy number variations
DNA Copy Number Variations - genetics
DNA methylation
DNA sequencing
Genetic disorders
Genetic testing
Genomes
Genomics
Genotypes
Haplotypes
Health aspects
High-Throughput Nucleotide Sequencing
Humans
Long-read sequencing
Methylation
Nanopore Sequencing
Neurodevelopmental disorders
Nucleotide sequence
Nucleotide sequencing
Oxford Nanopore Technologies
Sequence Analysis, DNA
Standard deviation
Workflow
title Implementation of Nanopore sequencing as a pragmatic workflow for copy number variant confirmation in the clinic
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T00%3A50%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implementation%20of%20Nanopore%20sequencing%20as%20a%20pragmatic%20workflow%20for%20copy%20number%20variant%20confirmation%20in%20the%20clinic&rft.jtitle=Journal%20of%20translational%20medicine&rft.au=Greer,%20Stephanie%20U&rft.date=2023-06-10&rft.volume=21&rft.issue=1&rft.spage=378&rft.epage=378&rft.pages=378-378&rft.artnum=378&rft.issn=1479-5876&rft.eissn=1479-5876&rft_id=info:doi/10.1186/s12967-023-04243-y&rft_dat=%3Cgale_doaj_%3EA752566614%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c564t-6bb9316da3ed414a66cfdc90dadd408683593c457da8590a9182d516e75d94003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2827117429&rft_id=info:pmid/37301971&rft_galeid=A752566614&rfr_iscdi=true