Loading…

Photoinduced Fabrication of Zinc Oxide Nanoparticles: Transformation of Morphological and Biological Response on Light Irradiance

The photoinduced synthesis of zinc oxide nanoparticles (ZnO NPs) was carried out to unveil the effects of change in wavelength of photons. ZnO NPs were synthesized by the coprecipitation technique exposed to different light regimes [dark environment, daylight, and blue-, green-, yellow-, and red-col...

Full description

Saved in:
Bibliographic Details
Published in:ACS omega 2021-05, Vol.6 (17), p.11783-11793
Main Authors: Sajjad, Anila, Bhatti, Sajjad Hussain, Ali, Zeeshan, Jaffari, Ghulam Hassnain, Khan, Nawazish Ali, Rizvi, Zarrin Fatima, Zia, Muhammad
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The photoinduced synthesis of zinc oxide nanoparticles (ZnO NPs) was carried out to unveil the effects of change in wavelength of photons. ZnO NPs were synthesized by the coprecipitation technique exposed to different light regimes [dark environment, daylight, and blue-, green-, yellow-, and red-colored light-emitting diodes (LEDs)] at room temperature. X-ray diffractogram (XRD) revealed the wurtzite structure of ZnO NPs. A small change in the size of ZnO NPs (17.11–22.56 nm) was observed with the variation in wavelength of lights from 350 to 700 nm. Spherical to hexagonal disks and rodlike surface morphologies were observed by scanning electron microscopy (SEM). The elemental composition and surface chemistry of NPs were studied by energy-dispersive X-ray diffractive (EDX) and Fourier transform infrared (FTIR) spectra. Maximum free radical quenching activity, cation radical scavenging, and total antioxidant capacity were found in ZnO NPs synthesized under green light (28.78 ± 0.18, 30.05 ± 0.21%, and 36.55 ± 2.63 μg AAE/mg, respectively). Daylight-synthesized NPs (DL-ZNPs) showed the greatest total reducing potential (15.81 ± 0.33 μg AAE/mg) and metal-chelating activity (37.77 ± 0.31%). Photoinduced ZnO NPs showed significant enzyme inhibitory effects on amylase, lipase, and urease by red-light NPs (87.49 ± 0.19%), green-light NPs (91.44 ± 0.29%), and blue-light NPs (92.17 ± 0.34%), respectively. Photoinduced ZnO NPs have been employed as nanozymes and found to exhibit intrinsic peroxidase-like activity as well. Blue-light-synthesized ZnO NPs displayed the strongest antibacterial activity (23 mm) against methicillin-resistant Staphylococcus aureus (MRSA). This study can be considered as a novel step toward the synthetic approach using LEDs to synthesize ZnO NPs with specific physicochemical properties and extends a great prospect in the environmental chemistry, food safety, and biomedical fields as nanozyme, antioxidant, antibacterial, anti-α-amylase, antiurease, and antilipase agents.
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.1c01512