Loading…

Wideband and Ultrawideband Channel Models in Working Machine Environment

We present statistical models for wideband and ultrawideband (UWB) radio channels in a working machine cabin environment. Based on a set of measurements, it was found that such a small and confined space causes mostly diffuse multipath scattering rather than specular paths. The amplitude of the chan...

Full description

Saved in:
Bibliographic Details
Published in:Modelling and simulation in engineering 2012-01, Vol.2012, p.1-10
Main Authors: Taparugssanagorn, Attaphongse, Hämäläinen, Matti, Iinatti, Jari
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present statistical models for wideband and ultrawideband (UWB) radio channels in a working machine cabin environment. Based on a set of measurements, it was found that such a small and confined space causes mostly diffuse multipath scattering rather than specular paths. The amplitude of the channel impulse responses in the wideband case is mostly Rayleigh distributed small-scale fading signal, with only a few paths exhibiting Ricean distributions, whereas the ones in the UWB case tend to be log-normally distributed. For the path amplitude, we suggest an exponential decay profile, which has a constant slope in dB scale, with the corresponding parameters for the UWB case. For the wideband case, a twofold exponential decay profile provides excellent fits to the measured data. It was also noted that the root-mean-square (RMS) delay spread is independent of the line-of-sight/obstructed line-of-sight situations of the channel. The multipath components contributing significant energy play a major role in such a small environment if compared to the direct path. In addition, the radio channel gains are attenuated with the presence of a driver inside the cabin.
ISSN:1687-5591
1687-5605
DOI:10.1155/2012/702917