Loading…
N‐doped carbon nanotube sponges and their excellent lithium storage performances
Preparation, analysis and lithium storage performance of a series of nitrogen‐doped carbon nanotube sponges (CNX) is presented in this work. The synthesis was performed using an aerosol‐assisted chemical vapor deposition (AACVD) in a bi‐sprayer system by using various carbon and nitrogen precursors...
Saved in:
Published in: | Nano select 2022-04, Vol.3 (4), p.864-873 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3536-f9b03f3a660b1502e0076cdaa61d8b99d83e11ed2619848b2a9bbe01e0b904803 |
---|---|
cites | cdi_FETCH-LOGICAL-c3536-f9b03f3a660b1502e0076cdaa61d8b99d83e11ed2619848b2a9bbe01e0b904803 |
container_end_page | 873 |
container_issue | 4 |
container_start_page | 864 |
container_title | Nano select |
container_volume | 3 |
creator | Zhu, Qi Botello‐Méndez, Andrés R. Cheng, Luhua Fajardo‐Diaz, Juan Muñoz‐Sandoval, Emilio López‐Urias, Florentino Wang, Jiande Gohy, Jean‐François Charlier, Jean‐Christophe Vlad, Alexandru |
description | Preparation, analysis and lithium storage performance of a series of nitrogen‐doped carbon nanotube sponges (CNX) is presented in this work. The synthesis was performed using an aerosol‐assisted chemical vapor deposition (AACVD) in a bi‐sprayer system by using various carbon and nitrogen precursors made of mixtures of benzylamine with toluene, urea, pyridine and 1,2‐dichlorbenzene, with ferrocene as catalyst. A series of physico‐chemical analysis techniques are used to characterize the composition and the morphology of the obtained materials, and a correlation of these with the lithium storage performances is attempted. The samples reveal an interconnected core‐shell CNX fiber morphology with a CNT‐core surrounded by an amorphous carbon shell. Appealing lithium storage performances are attained, while also considering aspects of safety, low potential, and long‐term cycling stability. The best performing sponges display a high specific capacity (223 mAh g−1) when cycled in a practically relevant voltage window (0.01–1V vs. Li), high first cycle (90%) and long‐term cycling (99.3%) coulombic efficiencies and excellent capacity retention after 1500 cycles. This study further analyses the interplay between the morphology and the physico‐chemistry of nitrogen‐doped carbon nanotube materials for Lithium storage and provides guidelines for future developments.
N‐doped CNT sponges (CNXs) are synthesized from various nitrogen precursors. When utilized as anodes for Li‐storage, all the samples show the stable capacities of above 200 mAh g−1, with excellent rate capability, and ultralow capacity decay of 0.021% per cycle. This superior electrochemical performance is assigned to the high‐level nitrogen content as well as to the particular crosslinked sponge morphology. |
doi_str_mv | 10.1002/nano.202100206 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e71713a7b4b343a6bcb0619de4cccec5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e71713a7b4b343a6bcb0619de4cccec5</doaj_id><sourcerecordid>2890718044</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3536-f9b03f3a660b1502e0076cdaa61d8b99d83e11ed2619848b2a9bbe01e0b904803</originalsourceid><addsrcrecordid>eNqFkU1Lw0AQhoMoWLRXzwueW2eSNNk9luJHobQgel72Y9KmpNm4m6K9-RP8jf4SUyvVm6f54H2fGWai6AphiADxTa1qN4wh3heQnUS9OON8kALi6Z_8POqHsIZOM0LMBfaix_nn-4d1DVlmlNeuZntSu9XEQuPqJQWmasvaFZWe0ZuhqqK6ZVXZrsrthoXWebUk1pAvnN-o2lC4jM4KVQXq_8SL6Pnu9mnyMJgt7qeT8WxgklGSDQqhISkSlWWgcQQxAeSZsUplaLkWwvKEEMnGGQqech0roTUBEmgBKYfkIpoeuNaptWx8uVF-J50q5XfD-aVUvi1NRZJyzDFRuU51knYjtdHQYS2lxhgyo451fWA13r1sKbRy7ba-7taXMReQI4c07VTDg8p4F4Kn4jgVQe4vL_fHk8c3dAZxMLyWFe3-Ucv5eL749X4B33qMuw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2890718044</pqid></control><display><type>article</type><title>N‐doped carbon nanotube sponges and their excellent lithium storage performances</title><source>Publicly Available Content Database</source><source>Wiley Open Access</source><creator>Zhu, Qi ; Botello‐Méndez, Andrés R. ; Cheng, Luhua ; Fajardo‐Diaz, Juan ; Muñoz‐Sandoval, Emilio ; López‐Urias, Florentino ; Wang, Jiande ; Gohy, Jean‐François ; Charlier, Jean‐Christophe ; Vlad, Alexandru</creator><creatorcontrib>Zhu, Qi ; Botello‐Méndez, Andrés R. ; Cheng, Luhua ; Fajardo‐Diaz, Juan ; Muñoz‐Sandoval, Emilio ; López‐Urias, Florentino ; Wang, Jiande ; Gohy, Jean‐François ; Charlier, Jean‐Christophe ; Vlad, Alexandru</creatorcontrib><description>Preparation, analysis and lithium storage performance of a series of nitrogen‐doped carbon nanotube sponges (CNX) is presented in this work. The synthesis was performed using an aerosol‐assisted chemical vapor deposition (AACVD) in a bi‐sprayer system by using various carbon and nitrogen precursors made of mixtures of benzylamine with toluene, urea, pyridine and 1,2‐dichlorbenzene, with ferrocene as catalyst. A series of physico‐chemical analysis techniques are used to characterize the composition and the morphology of the obtained materials, and a correlation of these with the lithium storage performances is attempted. The samples reveal an interconnected core‐shell CNX fiber morphology with a CNT‐core surrounded by an amorphous carbon shell. Appealing lithium storage performances are attained, while also considering aspects of safety, low potential, and long‐term cycling stability. The best performing sponges display a high specific capacity (223 mAh g−1) when cycled in a practically relevant voltage window (0.01–1V vs. Li), high first cycle (90%) and long‐term cycling (99.3%) coulombic efficiencies and excellent capacity retention after 1500 cycles. This study further analyses the interplay between the morphology and the physico‐chemistry of nitrogen‐doped carbon nanotube materials for Lithium storage and provides guidelines for future developments.
N‐doped CNT sponges (CNXs) are synthesized from various nitrogen precursors. When utilized as anodes for Li‐storage, all the samples show the stable capacities of above 200 mAh g−1, with excellent rate capability, and ultralow capacity decay of 0.021% per cycle. This superior electrochemical performance is assigned to the high‐level nitrogen content as well as to the particular crosslinked sponge morphology.</description><identifier>ISSN: 2688-4011</identifier><identifier>EISSN: 2688-4011</identifier><identifier>DOI: 10.1002/nano.202100206</identifier><language>eng</language><publisher>Weinheim: John Wiley & Sons, Inc</publisher><subject>Boron ; Carbon ; Carbon nanotubes ; Chemical analysis ; Chemical synthesis ; Chemical vapor deposition ; CNT sponge ; Conductivity ; Cycles ; Energy storage ; ferrocene catalyst ; Graphene ; Graphite ; Lithium ; lithium storage ; Morphology ; Nitrogen ; nitrogen doping ; Scanning electron microscopy ; Spectrum analysis ; Sponges ; Toluene</subject><ispartof>Nano select, 2022-04, Vol.3 (4), p.864-873</ispartof><rights>2020 The Authors. published by Wiley‐VCH GmbH</rights><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3536-f9b03f3a660b1502e0076cdaa61d8b99d83e11ed2619848b2a9bbe01e0b904803</citedby><cites>FETCH-LOGICAL-c3536-f9b03f3a660b1502e0076cdaa61d8b99d83e11ed2619848b2a9bbe01e0b904803</cites><orcidid>0000-0002-0059-9119</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnano.202100206$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2890718044?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,11542,25732,27903,27904,36991,44569,46030,46454</link.rule.ids></links><search><creatorcontrib>Zhu, Qi</creatorcontrib><creatorcontrib>Botello‐Méndez, Andrés R.</creatorcontrib><creatorcontrib>Cheng, Luhua</creatorcontrib><creatorcontrib>Fajardo‐Diaz, Juan</creatorcontrib><creatorcontrib>Muñoz‐Sandoval, Emilio</creatorcontrib><creatorcontrib>López‐Urias, Florentino</creatorcontrib><creatorcontrib>Wang, Jiande</creatorcontrib><creatorcontrib>Gohy, Jean‐François</creatorcontrib><creatorcontrib>Charlier, Jean‐Christophe</creatorcontrib><creatorcontrib>Vlad, Alexandru</creatorcontrib><title>N‐doped carbon nanotube sponges and their excellent lithium storage performances</title><title>Nano select</title><description>Preparation, analysis and lithium storage performance of a series of nitrogen‐doped carbon nanotube sponges (CNX) is presented in this work. The synthesis was performed using an aerosol‐assisted chemical vapor deposition (AACVD) in a bi‐sprayer system by using various carbon and nitrogen precursors made of mixtures of benzylamine with toluene, urea, pyridine and 1,2‐dichlorbenzene, with ferrocene as catalyst. A series of physico‐chemical analysis techniques are used to characterize the composition and the morphology of the obtained materials, and a correlation of these with the lithium storage performances is attempted. The samples reveal an interconnected core‐shell CNX fiber morphology with a CNT‐core surrounded by an amorphous carbon shell. Appealing lithium storage performances are attained, while also considering aspects of safety, low potential, and long‐term cycling stability. The best performing sponges display a high specific capacity (223 mAh g−1) when cycled in a practically relevant voltage window (0.01–1V vs. Li), high first cycle (90%) and long‐term cycling (99.3%) coulombic efficiencies and excellent capacity retention after 1500 cycles. This study further analyses the interplay between the morphology and the physico‐chemistry of nitrogen‐doped carbon nanotube materials for Lithium storage and provides guidelines for future developments.
N‐doped CNT sponges (CNXs) are synthesized from various nitrogen precursors. When utilized as anodes for Li‐storage, all the samples show the stable capacities of above 200 mAh g−1, with excellent rate capability, and ultralow capacity decay of 0.021% per cycle. This superior electrochemical performance is assigned to the high‐level nitrogen content as well as to the particular crosslinked sponge morphology.</description><subject>Boron</subject><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Chemical analysis</subject><subject>Chemical synthesis</subject><subject>Chemical vapor deposition</subject><subject>CNT sponge</subject><subject>Conductivity</subject><subject>Cycles</subject><subject>Energy storage</subject><subject>ferrocene catalyst</subject><subject>Graphene</subject><subject>Graphite</subject><subject>Lithium</subject><subject>lithium storage</subject><subject>Morphology</subject><subject>Nitrogen</subject><subject>nitrogen doping</subject><subject>Scanning electron microscopy</subject><subject>Spectrum analysis</subject><subject>Sponges</subject><subject>Toluene</subject><issn>2688-4011</issn><issn>2688-4011</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkU1Lw0AQhoMoWLRXzwueW2eSNNk9luJHobQgel72Y9KmpNm4m6K9-RP8jf4SUyvVm6f54H2fGWai6AphiADxTa1qN4wh3heQnUS9OON8kALi6Z_8POqHsIZOM0LMBfaix_nn-4d1DVlmlNeuZntSu9XEQuPqJQWmasvaFZWe0ZuhqqK6ZVXZrsrthoXWebUk1pAvnN-o2lC4jM4KVQXq_8SL6Pnu9mnyMJgt7qeT8WxgklGSDQqhISkSlWWgcQQxAeSZsUplaLkWwvKEEMnGGQqech0roTUBEmgBKYfkIpoeuNaptWx8uVF-J50q5XfD-aVUvi1NRZJyzDFRuU51knYjtdHQYS2lxhgyo451fWA13r1sKbRy7ba-7taXMReQI4c07VTDg8p4F4Kn4jgVQe4vL_fHk8c3dAZxMLyWFe3-Ucv5eL749X4B33qMuw</recordid><startdate>202204</startdate><enddate>202204</enddate><creator>Zhu, Qi</creator><creator>Botello‐Méndez, Andrés R.</creator><creator>Cheng, Luhua</creator><creator>Fajardo‐Diaz, Juan</creator><creator>Muñoz‐Sandoval, Emilio</creator><creator>López‐Urias, Florentino</creator><creator>Wang, Jiande</creator><creator>Gohy, Jean‐François</creator><creator>Charlier, Jean‐Christophe</creator><creator>Vlad, Alexandru</creator><general>John Wiley & Sons, Inc</general><general>Wiley-VCH</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0059-9119</orcidid></search><sort><creationdate>202204</creationdate><title>N‐doped carbon nanotube sponges and their excellent lithium storage performances</title><author>Zhu, Qi ; Botello‐Méndez, Andrés R. ; Cheng, Luhua ; Fajardo‐Diaz, Juan ; Muñoz‐Sandoval, Emilio ; López‐Urias, Florentino ; Wang, Jiande ; Gohy, Jean‐François ; Charlier, Jean‐Christophe ; Vlad, Alexandru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3536-f9b03f3a660b1502e0076cdaa61d8b99d83e11ed2619848b2a9bbe01e0b904803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Boron</topic><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Chemical analysis</topic><topic>Chemical synthesis</topic><topic>Chemical vapor deposition</topic><topic>CNT sponge</topic><topic>Conductivity</topic><topic>Cycles</topic><topic>Energy storage</topic><topic>ferrocene catalyst</topic><topic>Graphene</topic><topic>Graphite</topic><topic>Lithium</topic><topic>lithium storage</topic><topic>Morphology</topic><topic>Nitrogen</topic><topic>nitrogen doping</topic><topic>Scanning electron microscopy</topic><topic>Spectrum analysis</topic><topic>Sponges</topic><topic>Toluene</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Qi</creatorcontrib><creatorcontrib>Botello‐Méndez, Andrés R.</creatorcontrib><creatorcontrib>Cheng, Luhua</creatorcontrib><creatorcontrib>Fajardo‐Diaz, Juan</creatorcontrib><creatorcontrib>Muñoz‐Sandoval, Emilio</creatorcontrib><creatorcontrib>López‐Urias, Florentino</creatorcontrib><creatorcontrib>Wang, Jiande</creatorcontrib><creatorcontrib>Gohy, Jean‐François</creatorcontrib><creatorcontrib>Charlier, Jean‐Christophe</creatorcontrib><creatorcontrib>Vlad, Alexandru</creatorcontrib><collection>Wiley Open Access</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Directory of Open Access Journals</collection><jtitle>Nano select</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Qi</au><au>Botello‐Méndez, Andrés R.</au><au>Cheng, Luhua</au><au>Fajardo‐Diaz, Juan</au><au>Muñoz‐Sandoval, Emilio</au><au>López‐Urias, Florentino</au><au>Wang, Jiande</au><au>Gohy, Jean‐François</au><au>Charlier, Jean‐Christophe</au><au>Vlad, Alexandru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>N‐doped carbon nanotube sponges and their excellent lithium storage performances</atitle><jtitle>Nano select</jtitle><date>2022-04</date><risdate>2022</risdate><volume>3</volume><issue>4</issue><spage>864</spage><epage>873</epage><pages>864-873</pages><issn>2688-4011</issn><eissn>2688-4011</eissn><abstract>Preparation, analysis and lithium storage performance of a series of nitrogen‐doped carbon nanotube sponges (CNX) is presented in this work. The synthesis was performed using an aerosol‐assisted chemical vapor deposition (AACVD) in a bi‐sprayer system by using various carbon and nitrogen precursors made of mixtures of benzylamine with toluene, urea, pyridine and 1,2‐dichlorbenzene, with ferrocene as catalyst. A series of physico‐chemical analysis techniques are used to characterize the composition and the morphology of the obtained materials, and a correlation of these with the lithium storage performances is attempted. The samples reveal an interconnected core‐shell CNX fiber morphology with a CNT‐core surrounded by an amorphous carbon shell. Appealing lithium storage performances are attained, while also considering aspects of safety, low potential, and long‐term cycling stability. The best performing sponges display a high specific capacity (223 mAh g−1) when cycled in a practically relevant voltage window (0.01–1V vs. Li), high first cycle (90%) and long‐term cycling (99.3%) coulombic efficiencies and excellent capacity retention after 1500 cycles. This study further analyses the interplay between the morphology and the physico‐chemistry of nitrogen‐doped carbon nanotube materials for Lithium storage and provides guidelines for future developments.
N‐doped CNT sponges (CNXs) are synthesized from various nitrogen precursors. When utilized as anodes for Li‐storage, all the samples show the stable capacities of above 200 mAh g−1, with excellent rate capability, and ultralow capacity decay of 0.021% per cycle. This superior electrochemical performance is assigned to the high‐level nitrogen content as well as to the particular crosslinked sponge morphology.</abstract><cop>Weinheim</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/nano.202100206</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0059-9119</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2688-4011 |
ispartof | Nano select, 2022-04, Vol.3 (4), p.864-873 |
issn | 2688-4011 2688-4011 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_e71713a7b4b343a6bcb0619de4cccec5 |
source | Publicly Available Content Database; Wiley Open Access |
subjects | Boron Carbon Carbon nanotubes Chemical analysis Chemical synthesis Chemical vapor deposition CNT sponge Conductivity Cycles Energy storage ferrocene catalyst Graphene Graphite Lithium lithium storage Morphology Nitrogen nitrogen doping Scanning electron microscopy Spectrum analysis Sponges Toluene |
title | N‐doped carbon nanotube sponges and their excellent lithium storage performances |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T09%3A18%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=N%E2%80%90doped%20carbon%20nanotube%20sponges%20and%20their%20excellent%20lithium%20storage%20performances&rft.jtitle=Nano%20select&rft.au=Zhu,%20Qi&rft.date=2022-04&rft.volume=3&rft.issue=4&rft.spage=864&rft.epage=873&rft.pages=864-873&rft.issn=2688-4011&rft.eissn=2688-4011&rft_id=info:doi/10.1002/nano.202100206&rft_dat=%3Cproquest_doaj_%3E2890718044%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3536-f9b03f3a660b1502e0076cdaa61d8b99d83e11ed2619848b2a9bbe01e0b904803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2890718044&rft_id=info:pmid/&rfr_iscdi=true |