Loading…

N‐doped carbon nanotube sponges and their excellent lithium storage performances

Preparation, analysis and lithium storage performance of a series of nitrogen‐doped carbon nanotube sponges (CNX) is presented in this work. The synthesis was performed using an aerosol‐assisted chemical vapor deposition (AACVD) in a bi‐sprayer system by using various carbon and nitrogen precursors...

Full description

Saved in:
Bibliographic Details
Published in:Nano select 2022-04, Vol.3 (4), p.864-873
Main Authors: Zhu, Qi, Botello‐Méndez, Andrés R., Cheng, Luhua, Fajardo‐Diaz, Juan, Muñoz‐Sandoval, Emilio, López‐Urias, Florentino, Wang, Jiande, Gohy, Jean‐François, Charlier, Jean‐Christophe, Vlad, Alexandru
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3536-f9b03f3a660b1502e0076cdaa61d8b99d83e11ed2619848b2a9bbe01e0b904803
cites cdi_FETCH-LOGICAL-c3536-f9b03f3a660b1502e0076cdaa61d8b99d83e11ed2619848b2a9bbe01e0b904803
container_end_page 873
container_issue 4
container_start_page 864
container_title Nano select
container_volume 3
creator Zhu, Qi
Botello‐Méndez, Andrés R.
Cheng, Luhua
Fajardo‐Diaz, Juan
Muñoz‐Sandoval, Emilio
López‐Urias, Florentino
Wang, Jiande
Gohy, Jean‐François
Charlier, Jean‐Christophe
Vlad, Alexandru
description Preparation, analysis and lithium storage performance of a series of nitrogen‐doped carbon nanotube sponges (CNX) is presented in this work. The synthesis was performed using an aerosol‐assisted chemical vapor deposition (AACVD) in a bi‐sprayer system by using various carbon and nitrogen precursors made of mixtures of benzylamine with toluene, urea, pyridine and 1,2‐dichlorbenzene, with ferrocene as catalyst. A series of physico‐chemical analysis techniques are used to characterize the composition and the morphology of the obtained materials, and a correlation of these with the lithium storage performances is attempted. The samples reveal an interconnected core‐shell CNX fiber morphology with a CNT‐core surrounded by an amorphous carbon shell. Appealing lithium storage performances are attained, while also considering aspects of safety, low potential, and long‐term cycling stability. The best performing sponges display a high specific capacity (223 mAh g−1) when cycled in a practically relevant voltage window (0.01–1V vs. Li), high first cycle (90%) and long‐term cycling (99.3%) coulombic efficiencies and excellent capacity retention after 1500 cycles. This study further analyses the interplay between the morphology and the physico‐chemistry of nitrogen‐doped carbon nanotube materials for Lithium storage and provides guidelines for future developments. N‐doped CNT sponges (CNXs) are synthesized from various nitrogen precursors. When utilized as anodes for Li‐storage, all the samples show the stable capacities of above 200 mAh g−1, with excellent rate capability, and ultralow capacity decay of 0.021% per cycle. This superior electrochemical performance is assigned to the high‐level nitrogen content as well as to the particular crosslinked sponge morphology.
doi_str_mv 10.1002/nano.202100206
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e71713a7b4b343a6bcb0619de4cccec5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e71713a7b4b343a6bcb0619de4cccec5</doaj_id><sourcerecordid>2890718044</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3536-f9b03f3a660b1502e0076cdaa61d8b99d83e11ed2619848b2a9bbe01e0b904803</originalsourceid><addsrcrecordid>eNqFkU1Lw0AQhoMoWLRXzwueW2eSNNk9luJHobQgel72Y9KmpNm4m6K9-RP8jf4SUyvVm6f54H2fGWai6AphiADxTa1qN4wh3heQnUS9OON8kALi6Z_8POqHsIZOM0LMBfaix_nn-4d1DVlmlNeuZntSu9XEQuPqJQWmasvaFZWe0ZuhqqK6ZVXZrsrthoXWebUk1pAvnN-o2lC4jM4KVQXq_8SL6Pnu9mnyMJgt7qeT8WxgklGSDQqhISkSlWWgcQQxAeSZsUplaLkWwvKEEMnGGQqech0roTUBEmgBKYfkIpoeuNaptWx8uVF-J50q5XfD-aVUvi1NRZJyzDFRuU51knYjtdHQYS2lxhgyo451fWA13r1sKbRy7ba-7taXMReQI4c07VTDg8p4F4Kn4jgVQe4vL_fHk8c3dAZxMLyWFe3-Ucv5eL749X4B33qMuw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2890718044</pqid></control><display><type>article</type><title>N‐doped carbon nanotube sponges and their excellent lithium storage performances</title><source>Publicly Available Content Database</source><source>Wiley Open Access</source><creator>Zhu, Qi ; Botello‐Méndez, Andrés R. ; Cheng, Luhua ; Fajardo‐Diaz, Juan ; Muñoz‐Sandoval, Emilio ; López‐Urias, Florentino ; Wang, Jiande ; Gohy, Jean‐François ; Charlier, Jean‐Christophe ; Vlad, Alexandru</creator><creatorcontrib>Zhu, Qi ; Botello‐Méndez, Andrés R. ; Cheng, Luhua ; Fajardo‐Diaz, Juan ; Muñoz‐Sandoval, Emilio ; López‐Urias, Florentino ; Wang, Jiande ; Gohy, Jean‐François ; Charlier, Jean‐Christophe ; Vlad, Alexandru</creatorcontrib><description>Preparation, analysis and lithium storage performance of a series of nitrogen‐doped carbon nanotube sponges (CNX) is presented in this work. The synthesis was performed using an aerosol‐assisted chemical vapor deposition (AACVD) in a bi‐sprayer system by using various carbon and nitrogen precursors made of mixtures of benzylamine with toluene, urea, pyridine and 1,2‐dichlorbenzene, with ferrocene as catalyst. A series of physico‐chemical analysis techniques are used to characterize the composition and the morphology of the obtained materials, and a correlation of these with the lithium storage performances is attempted. The samples reveal an interconnected core‐shell CNX fiber morphology with a CNT‐core surrounded by an amorphous carbon shell. Appealing lithium storage performances are attained, while also considering aspects of safety, low potential, and long‐term cycling stability. The best performing sponges display a high specific capacity (223 mAh g−1) when cycled in a practically relevant voltage window (0.01–1V vs. Li), high first cycle (90%) and long‐term cycling (99.3%) coulombic efficiencies and excellent capacity retention after 1500 cycles. This study further analyses the interplay between the morphology and the physico‐chemistry of nitrogen‐doped carbon nanotube materials for Lithium storage and provides guidelines for future developments. N‐doped CNT sponges (CNXs) are synthesized from various nitrogen precursors. When utilized as anodes for Li‐storage, all the samples show the stable capacities of above 200 mAh g−1, with excellent rate capability, and ultralow capacity decay of 0.021% per cycle. This superior electrochemical performance is assigned to the high‐level nitrogen content as well as to the particular crosslinked sponge morphology.</description><identifier>ISSN: 2688-4011</identifier><identifier>EISSN: 2688-4011</identifier><identifier>DOI: 10.1002/nano.202100206</identifier><language>eng</language><publisher>Weinheim: John Wiley &amp; Sons, Inc</publisher><subject>Boron ; Carbon ; Carbon nanotubes ; Chemical analysis ; Chemical synthesis ; Chemical vapor deposition ; CNT sponge ; Conductivity ; Cycles ; Energy storage ; ferrocene catalyst ; Graphene ; Graphite ; Lithium ; lithium storage ; Morphology ; Nitrogen ; nitrogen doping ; Scanning electron microscopy ; Spectrum analysis ; Sponges ; Toluene</subject><ispartof>Nano select, 2022-04, Vol.3 (4), p.864-873</ispartof><rights>2020 The Authors. published by Wiley‐VCH GmbH</rights><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3536-f9b03f3a660b1502e0076cdaa61d8b99d83e11ed2619848b2a9bbe01e0b904803</citedby><cites>FETCH-LOGICAL-c3536-f9b03f3a660b1502e0076cdaa61d8b99d83e11ed2619848b2a9bbe01e0b904803</cites><orcidid>0000-0002-0059-9119</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnano.202100206$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2890718044?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,11542,25732,27903,27904,36991,44569,46030,46454</link.rule.ids></links><search><creatorcontrib>Zhu, Qi</creatorcontrib><creatorcontrib>Botello‐Méndez, Andrés R.</creatorcontrib><creatorcontrib>Cheng, Luhua</creatorcontrib><creatorcontrib>Fajardo‐Diaz, Juan</creatorcontrib><creatorcontrib>Muñoz‐Sandoval, Emilio</creatorcontrib><creatorcontrib>López‐Urias, Florentino</creatorcontrib><creatorcontrib>Wang, Jiande</creatorcontrib><creatorcontrib>Gohy, Jean‐François</creatorcontrib><creatorcontrib>Charlier, Jean‐Christophe</creatorcontrib><creatorcontrib>Vlad, Alexandru</creatorcontrib><title>N‐doped carbon nanotube sponges and their excellent lithium storage performances</title><title>Nano select</title><description>Preparation, analysis and lithium storage performance of a series of nitrogen‐doped carbon nanotube sponges (CNX) is presented in this work. The synthesis was performed using an aerosol‐assisted chemical vapor deposition (AACVD) in a bi‐sprayer system by using various carbon and nitrogen precursors made of mixtures of benzylamine with toluene, urea, pyridine and 1,2‐dichlorbenzene, with ferrocene as catalyst. A series of physico‐chemical analysis techniques are used to characterize the composition and the morphology of the obtained materials, and a correlation of these with the lithium storage performances is attempted. The samples reveal an interconnected core‐shell CNX fiber morphology with a CNT‐core surrounded by an amorphous carbon shell. Appealing lithium storage performances are attained, while also considering aspects of safety, low potential, and long‐term cycling stability. The best performing sponges display a high specific capacity (223 mAh g−1) when cycled in a practically relevant voltage window (0.01–1V vs. Li), high first cycle (90%) and long‐term cycling (99.3%) coulombic efficiencies and excellent capacity retention after 1500 cycles. This study further analyses the interplay between the morphology and the physico‐chemistry of nitrogen‐doped carbon nanotube materials for Lithium storage and provides guidelines for future developments. N‐doped CNT sponges (CNXs) are synthesized from various nitrogen precursors. When utilized as anodes for Li‐storage, all the samples show the stable capacities of above 200 mAh g−1, with excellent rate capability, and ultralow capacity decay of 0.021% per cycle. This superior electrochemical performance is assigned to the high‐level nitrogen content as well as to the particular crosslinked sponge morphology.</description><subject>Boron</subject><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Chemical analysis</subject><subject>Chemical synthesis</subject><subject>Chemical vapor deposition</subject><subject>CNT sponge</subject><subject>Conductivity</subject><subject>Cycles</subject><subject>Energy storage</subject><subject>ferrocene catalyst</subject><subject>Graphene</subject><subject>Graphite</subject><subject>Lithium</subject><subject>lithium storage</subject><subject>Morphology</subject><subject>Nitrogen</subject><subject>nitrogen doping</subject><subject>Scanning electron microscopy</subject><subject>Spectrum analysis</subject><subject>Sponges</subject><subject>Toluene</subject><issn>2688-4011</issn><issn>2688-4011</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkU1Lw0AQhoMoWLRXzwueW2eSNNk9luJHobQgel72Y9KmpNm4m6K9-RP8jf4SUyvVm6f54H2fGWai6AphiADxTa1qN4wh3heQnUS9OON8kALi6Z_8POqHsIZOM0LMBfaix_nn-4d1DVlmlNeuZntSu9XEQuPqJQWmasvaFZWe0ZuhqqK6ZVXZrsrthoXWebUk1pAvnN-o2lC4jM4KVQXq_8SL6Pnu9mnyMJgt7qeT8WxgklGSDQqhISkSlWWgcQQxAeSZsUplaLkWwvKEEMnGGQqech0roTUBEmgBKYfkIpoeuNaptWx8uVF-J50q5XfD-aVUvi1NRZJyzDFRuU51knYjtdHQYS2lxhgyo451fWA13r1sKbRy7ba-7taXMReQI4c07VTDg8p4F4Kn4jgVQe4vL_fHk8c3dAZxMLyWFe3-Ucv5eL749X4B33qMuw</recordid><startdate>202204</startdate><enddate>202204</enddate><creator>Zhu, Qi</creator><creator>Botello‐Méndez, Andrés R.</creator><creator>Cheng, Luhua</creator><creator>Fajardo‐Diaz, Juan</creator><creator>Muñoz‐Sandoval, Emilio</creator><creator>López‐Urias, Florentino</creator><creator>Wang, Jiande</creator><creator>Gohy, Jean‐François</creator><creator>Charlier, Jean‐Christophe</creator><creator>Vlad, Alexandru</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley-VCH</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0059-9119</orcidid></search><sort><creationdate>202204</creationdate><title>N‐doped carbon nanotube sponges and their excellent lithium storage performances</title><author>Zhu, Qi ; Botello‐Méndez, Andrés R. ; Cheng, Luhua ; Fajardo‐Diaz, Juan ; Muñoz‐Sandoval, Emilio ; López‐Urias, Florentino ; Wang, Jiande ; Gohy, Jean‐François ; Charlier, Jean‐Christophe ; Vlad, Alexandru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3536-f9b03f3a660b1502e0076cdaa61d8b99d83e11ed2619848b2a9bbe01e0b904803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Boron</topic><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Chemical analysis</topic><topic>Chemical synthesis</topic><topic>Chemical vapor deposition</topic><topic>CNT sponge</topic><topic>Conductivity</topic><topic>Cycles</topic><topic>Energy storage</topic><topic>ferrocene catalyst</topic><topic>Graphene</topic><topic>Graphite</topic><topic>Lithium</topic><topic>lithium storage</topic><topic>Morphology</topic><topic>Nitrogen</topic><topic>nitrogen doping</topic><topic>Scanning electron microscopy</topic><topic>Spectrum analysis</topic><topic>Sponges</topic><topic>Toluene</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Qi</creatorcontrib><creatorcontrib>Botello‐Méndez, Andrés R.</creatorcontrib><creatorcontrib>Cheng, Luhua</creatorcontrib><creatorcontrib>Fajardo‐Diaz, Juan</creatorcontrib><creatorcontrib>Muñoz‐Sandoval, Emilio</creatorcontrib><creatorcontrib>López‐Urias, Florentino</creatorcontrib><creatorcontrib>Wang, Jiande</creatorcontrib><creatorcontrib>Gohy, Jean‐François</creatorcontrib><creatorcontrib>Charlier, Jean‐Christophe</creatorcontrib><creatorcontrib>Vlad, Alexandru</creatorcontrib><collection>Wiley Open Access</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Directory of Open Access Journals</collection><jtitle>Nano select</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Qi</au><au>Botello‐Méndez, Andrés R.</au><au>Cheng, Luhua</au><au>Fajardo‐Diaz, Juan</au><au>Muñoz‐Sandoval, Emilio</au><au>López‐Urias, Florentino</au><au>Wang, Jiande</au><au>Gohy, Jean‐François</au><au>Charlier, Jean‐Christophe</au><au>Vlad, Alexandru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>N‐doped carbon nanotube sponges and their excellent lithium storage performances</atitle><jtitle>Nano select</jtitle><date>2022-04</date><risdate>2022</risdate><volume>3</volume><issue>4</issue><spage>864</spage><epage>873</epage><pages>864-873</pages><issn>2688-4011</issn><eissn>2688-4011</eissn><abstract>Preparation, analysis and lithium storage performance of a series of nitrogen‐doped carbon nanotube sponges (CNX) is presented in this work. The synthesis was performed using an aerosol‐assisted chemical vapor deposition (AACVD) in a bi‐sprayer system by using various carbon and nitrogen precursors made of mixtures of benzylamine with toluene, urea, pyridine and 1,2‐dichlorbenzene, with ferrocene as catalyst. A series of physico‐chemical analysis techniques are used to characterize the composition and the morphology of the obtained materials, and a correlation of these with the lithium storage performances is attempted. The samples reveal an interconnected core‐shell CNX fiber morphology with a CNT‐core surrounded by an amorphous carbon shell. Appealing lithium storage performances are attained, while also considering aspects of safety, low potential, and long‐term cycling stability. The best performing sponges display a high specific capacity (223 mAh g−1) when cycled in a practically relevant voltage window (0.01–1V vs. Li), high first cycle (90%) and long‐term cycling (99.3%) coulombic efficiencies and excellent capacity retention after 1500 cycles. This study further analyses the interplay between the morphology and the physico‐chemistry of nitrogen‐doped carbon nanotube materials for Lithium storage and provides guidelines for future developments. N‐doped CNT sponges (CNXs) are synthesized from various nitrogen precursors. When utilized as anodes for Li‐storage, all the samples show the stable capacities of above 200 mAh g−1, with excellent rate capability, and ultralow capacity decay of 0.021% per cycle. This superior electrochemical performance is assigned to the high‐level nitrogen content as well as to the particular crosslinked sponge morphology.</abstract><cop>Weinheim</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/nano.202100206</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0059-9119</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2688-4011
ispartof Nano select, 2022-04, Vol.3 (4), p.864-873
issn 2688-4011
2688-4011
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_e71713a7b4b343a6bcb0619de4cccec5
source Publicly Available Content Database; Wiley Open Access
subjects Boron
Carbon
Carbon nanotubes
Chemical analysis
Chemical synthesis
Chemical vapor deposition
CNT sponge
Conductivity
Cycles
Energy storage
ferrocene catalyst
Graphene
Graphite
Lithium
lithium storage
Morphology
Nitrogen
nitrogen doping
Scanning electron microscopy
Spectrum analysis
Sponges
Toluene
title N‐doped carbon nanotube sponges and their excellent lithium storage performances
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T09%3A18%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=N%E2%80%90doped%20carbon%20nanotube%20sponges%20and%20their%20excellent%20lithium%20storage%20performances&rft.jtitle=Nano%20select&rft.au=Zhu,%20Qi&rft.date=2022-04&rft.volume=3&rft.issue=4&rft.spage=864&rft.epage=873&rft.pages=864-873&rft.issn=2688-4011&rft.eissn=2688-4011&rft_id=info:doi/10.1002/nano.202100206&rft_dat=%3Cproquest_doaj_%3E2890718044%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3536-f9b03f3a660b1502e0076cdaa61d8b99d83e11ed2619848b2a9bbe01e0b904803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2890718044&rft_id=info:pmid/&rfr_iscdi=true