Loading…

Geochemical zones and environmental gradients for soils from the central Transantarctic Mountains, Antarctica

Previous studies have established links between biodiversity and soil geochemistry in the McMurdo Dry Valleys, Antarctica, where environmental gradients are important determinants of soil biodiversity. However, these gradients are not well established in the central Transantarctic Mountains, which a...

Full description

Saved in:
Bibliographic Details
Published in:Biogeosciences 2021-03, Vol.18 (5), p.1629-1644
Main Authors: Diaz, Melisa A, Gardner, Christopher B, Welch, Susan A, Jackson, W. Andrew, Adams, Byron J, Wall, Diana H, Hogg, Ian D, Fierer, Noah, Lyons, W. Berry
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c477t-6663b3d32647d7ba863c11d892d2a3bc24667a340ab72d9bc949115fab1156d13
cites cdi_FETCH-LOGICAL-c477t-6663b3d32647d7ba863c11d892d2a3bc24667a340ab72d9bc949115fab1156d13
container_end_page 1644
container_issue 5
container_start_page 1629
container_title Biogeosciences
container_volume 18
creator Diaz, Melisa A
Gardner, Christopher B
Welch, Susan A
Jackson, W. Andrew
Adams, Byron J
Wall, Diana H
Hogg, Ian D
Fierer, Noah
Lyons, W. Berry
description Previous studies have established links between biodiversity and soil geochemistry in the McMurdo Dry Valleys, Antarctica, where environmental gradients are important determinants of soil biodiversity. However, these gradients are not well established in the central Transantarctic Mountains, which are thought to represent some of the least hospitable Antarctic soils. We analyzed 220 samples from 11 ice-free areas along the Shackleton Glacier (∼ 85∘ S), a major outlet glacier of the East Antarctic Ice Sheet. We established three zones of distinct geochemical gradients near the head of the glacier (upper), its central part (middle), and at the mouth (lower). The upper zone had the highest water-soluble salt concentrations with total salt concentrations exceeding 80 000 µg g−1, while the lower zone had the lowest water-soluble N:P ratios, suggesting that, in addition to other parameters (such as proximity to water and/or ice), the lower zone likely represents the most favorable ecological habitats. Given the strong dependence of geochemistry on geographic parameters, we developed multiple linear regression and random forest models to predict soil geochemical trends given latitude, longitude, elevation, distance from the coast, distance from the glacier, and soil moisture (variables which can be inferred from remote measurements). Confidence in our random forest model predictions was moderately high with R2 values for total water-soluble salts, water-soluble N:P, ClO4-, and ClO3- of 0.81, 0.88, 0.78, and 0.74, respectively. These modeling results can be used to predict geochemical gradients and estimate salt concentrations for other Transantarctic Mountain soils, information that can ultimately be used to better predict distributions of soil biota in this remote region.
doi_str_mv 10.5194/bg-18-1629-2021
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e71c66bc17914a0fbdd188d1949659da</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A654392192</galeid><doaj_id>oai_doaj_org_article_e71c66bc17914a0fbdd188d1949659da</doaj_id><sourcerecordid>A654392192</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-6663b3d32647d7ba863c11d892d2a3bc24667a340ab72d9bc949115fab1156d13</originalsourceid><addsrcrecordid>eNptksuLFDEQxhtRcF09e23wJNi7XUkmj-Ow6DqwIuh6DpVH92aY7qxJj6h_vTWOrwEJJMWXX31UKtU0z6G_WIERl27sQHcgmelYz-BBcwaKyU6ANg__iR83T2rd9j3XvV6dNdN1zP4uTsnjrv2e51hbnEMb5y-p5HmK80L6WDAkCms75NLWnHYUlTy1y11sPV0Ugm4LzhWJL35Jvn2X9xSnub5q179FfNo8GnBX47Nf53nz6c3r26u33c37683V-qbzQqmlk1JyxwNnUqigHGrJPUDQhgWG3HkmpFTIRY9OsWCcN8IArAZ0tMsA_LzZHH1Dxq29L2nC8s1mTPankMtosVBBu2ijAi-l86AMCOwHFwJoHaijRq5MQPJ6cfS6L_nzPtbFbvO-zFS-ZcJobYzi_C81IpmmecjUFD-l6u1argQ3DAwj6uI_FK1w-AHq_pBIP0l4eZJAzBK_LiPua7Wbjx9O2csj60uutcThz8Oht4cRsW60oO1hROxhRPgP1MCtBA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2498899733</pqid></control><display><type>article</type><title>Geochemical zones and environmental gradients for soils from the central Transantarctic Mountains, Antarctica</title><source>Access via ProQuest (Open Access)</source><source>DOAJ Directory of Open Access Journals</source><creator>Diaz, Melisa A ; Gardner, Christopher B ; Welch, Susan A ; Jackson, W. Andrew ; Adams, Byron J ; Wall, Diana H ; Hogg, Ian D ; Fierer, Noah ; Lyons, W. Berry</creator><creatorcontrib>Diaz, Melisa A ; Gardner, Christopher B ; Welch, Susan A ; Jackson, W. Andrew ; Adams, Byron J ; Wall, Diana H ; Hogg, Ian D ; Fierer, Noah ; Lyons, W. Berry</creatorcontrib><description>Previous studies have established links between biodiversity and soil geochemistry in the McMurdo Dry Valleys, Antarctica, where environmental gradients are important determinants of soil biodiversity. However, these gradients are not well established in the central Transantarctic Mountains, which are thought to represent some of the least hospitable Antarctic soils. We analyzed 220 samples from 11 ice-free areas along the Shackleton Glacier (∼ 85∘ S), a major outlet glacier of the East Antarctic Ice Sheet. We established three zones of distinct geochemical gradients near the head of the glacier (upper), its central part (middle), and at the mouth (lower). The upper zone had the highest water-soluble salt concentrations with total salt concentrations exceeding 80 000 µg g−1, while the lower zone had the lowest water-soluble N:P ratios, suggesting that, in addition to other parameters (such as proximity to water and/or ice), the lower zone likely represents the most favorable ecological habitats. Given the strong dependence of geochemistry on geographic parameters, we developed multiple linear regression and random forest models to predict soil geochemical trends given latitude, longitude, elevation, distance from the coast, distance from the glacier, and soil moisture (variables which can be inferred from remote measurements). Confidence in our random forest model predictions was moderately high with R2 values for total water-soluble salts, water-soluble N:P, ClO4-, and ClO3- of 0.81, 0.88, 0.78, and 0.74, respectively. These modeling results can be used to predict geochemical gradients and estimate salt concentrations for other Transantarctic Mountain soils, information that can ultimately be used to better predict distributions of soil biota in this remote region.</description><identifier>ISSN: 1726-4189</identifier><identifier>ISSN: 1726-4170</identifier><identifier>EISSN: 1726-4189</identifier><identifier>DOI: 10.5194/bg-18-1629-2021</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Analysis ; Antarctic glaciers ; Antarctic ice sheet ; Biodiversity ; Biota ; Deserts ; Distance ; Elevation ; Environmental aspects ; Environmental gradient ; Geochemistry ; Glaciation ; Glaciers ; Gradients ; Ice sheets ; Mathematical models ; Mountain soils ; Mountains ; Nematodes ; Nitrates ; Parameters ; Polar environments ; Precipitation ; Regression analysis ; Salt ; Salts ; Satellites ; Soil ; Soil analysis ; Soil moisture ; Soils ; Valleys ; Water ; Water chemistry</subject><ispartof>Biogeosciences, 2021-03, Vol.18 (5), p.1629-1644</ispartof><rights>COPYRIGHT 2021 Copernicus GmbH</rights><rights>2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-6663b3d32647d7ba863c11d892d2a3bc24667a340ab72d9bc949115fab1156d13</citedby><cites>FETCH-LOGICAL-c477t-6663b3d32647d7ba863c11d892d2a3bc24667a340ab72d9bc949115fab1156d13</cites><orcidid>0000-0003-0400-3754 ; 0000-0001-6657-358X ; 0000-0002-9466-5235</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2498899733/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2498899733?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Diaz, Melisa A</creatorcontrib><creatorcontrib>Gardner, Christopher B</creatorcontrib><creatorcontrib>Welch, Susan A</creatorcontrib><creatorcontrib>Jackson, W. Andrew</creatorcontrib><creatorcontrib>Adams, Byron J</creatorcontrib><creatorcontrib>Wall, Diana H</creatorcontrib><creatorcontrib>Hogg, Ian D</creatorcontrib><creatorcontrib>Fierer, Noah</creatorcontrib><creatorcontrib>Lyons, W. Berry</creatorcontrib><title>Geochemical zones and environmental gradients for soils from the central Transantarctic Mountains, Antarctica</title><title>Biogeosciences</title><description>Previous studies have established links between biodiversity and soil geochemistry in the McMurdo Dry Valleys, Antarctica, where environmental gradients are important determinants of soil biodiversity. However, these gradients are not well established in the central Transantarctic Mountains, which are thought to represent some of the least hospitable Antarctic soils. We analyzed 220 samples from 11 ice-free areas along the Shackleton Glacier (∼ 85∘ S), a major outlet glacier of the East Antarctic Ice Sheet. We established three zones of distinct geochemical gradients near the head of the glacier (upper), its central part (middle), and at the mouth (lower). The upper zone had the highest water-soluble salt concentrations with total salt concentrations exceeding 80 000 µg g−1, while the lower zone had the lowest water-soluble N:P ratios, suggesting that, in addition to other parameters (such as proximity to water and/or ice), the lower zone likely represents the most favorable ecological habitats. Given the strong dependence of geochemistry on geographic parameters, we developed multiple linear regression and random forest models to predict soil geochemical trends given latitude, longitude, elevation, distance from the coast, distance from the glacier, and soil moisture (variables which can be inferred from remote measurements). Confidence in our random forest model predictions was moderately high with R2 values for total water-soluble salts, water-soluble N:P, ClO4-, and ClO3- of 0.81, 0.88, 0.78, and 0.74, respectively. These modeling results can be used to predict geochemical gradients and estimate salt concentrations for other Transantarctic Mountain soils, information that can ultimately be used to better predict distributions of soil biota in this remote region.</description><subject>Analysis</subject><subject>Antarctic glaciers</subject><subject>Antarctic ice sheet</subject><subject>Biodiversity</subject><subject>Biota</subject><subject>Deserts</subject><subject>Distance</subject><subject>Elevation</subject><subject>Environmental aspects</subject><subject>Environmental gradient</subject><subject>Geochemistry</subject><subject>Glaciation</subject><subject>Glaciers</subject><subject>Gradients</subject><subject>Ice sheets</subject><subject>Mathematical models</subject><subject>Mountain soils</subject><subject>Mountains</subject><subject>Nematodes</subject><subject>Nitrates</subject><subject>Parameters</subject><subject>Polar environments</subject><subject>Precipitation</subject><subject>Regression analysis</subject><subject>Salt</subject><subject>Salts</subject><subject>Satellites</subject><subject>Soil</subject><subject>Soil analysis</subject><subject>Soil moisture</subject><subject>Soils</subject><subject>Valleys</subject><subject>Water</subject><subject>Water chemistry</subject><issn>1726-4189</issn><issn>1726-4170</issn><issn>1726-4189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptksuLFDEQxhtRcF09e23wJNi7XUkmj-Ow6DqwIuh6DpVH92aY7qxJj6h_vTWOrwEJJMWXX31UKtU0z6G_WIERl27sQHcgmelYz-BBcwaKyU6ANg__iR83T2rd9j3XvV6dNdN1zP4uTsnjrv2e51hbnEMb5y-p5HmK80L6WDAkCms75NLWnHYUlTy1y11sPV0Ugm4LzhWJL35Jvn2X9xSnub5q179FfNo8GnBX47Nf53nz6c3r26u33c37683V-qbzQqmlk1JyxwNnUqigHGrJPUDQhgWG3HkmpFTIRY9OsWCcN8IArAZ0tMsA_LzZHH1Dxq29L2nC8s1mTPankMtosVBBu2ijAi-l86AMCOwHFwJoHaijRq5MQPJ6cfS6L_nzPtbFbvO-zFS-ZcJobYzi_C81IpmmecjUFD-l6u1argQ3DAwj6uI_FK1w-AHq_pBIP0l4eZJAzBK_LiPua7Wbjx9O2csj60uutcThz8Oht4cRsW60oO1hROxhRPgP1MCtBA</recordid><startdate>20210309</startdate><enddate>20210309</enddate><creator>Diaz, Melisa A</creator><creator>Gardner, Christopher B</creator><creator>Welch, Susan A</creator><creator>Jackson, W. Andrew</creator><creator>Adams, Byron J</creator><creator>Wall, Diana H</creator><creator>Hogg, Ian D</creator><creator>Fierer, Noah</creator><creator>Lyons, W. Berry</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7QO</scope><scope>7SN</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H95</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L6V</scope><scope>LK8</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0400-3754</orcidid><orcidid>https://orcid.org/0000-0001-6657-358X</orcidid><orcidid>https://orcid.org/0000-0002-9466-5235</orcidid></search><sort><creationdate>20210309</creationdate><title>Geochemical zones and environmental gradients for soils from the central Transantarctic Mountains, Antarctica</title><author>Diaz, Melisa A ; Gardner, Christopher B ; Welch, Susan A ; Jackson, W. Andrew ; Adams, Byron J ; Wall, Diana H ; Hogg, Ian D ; Fierer, Noah ; Lyons, W. Berry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-6663b3d32647d7ba863c11d892d2a3bc24667a340ab72d9bc949115fab1156d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Antarctic glaciers</topic><topic>Antarctic ice sheet</topic><topic>Biodiversity</topic><topic>Biota</topic><topic>Deserts</topic><topic>Distance</topic><topic>Elevation</topic><topic>Environmental aspects</topic><topic>Environmental gradient</topic><topic>Geochemistry</topic><topic>Glaciation</topic><topic>Glaciers</topic><topic>Gradients</topic><topic>Ice sheets</topic><topic>Mathematical models</topic><topic>Mountain soils</topic><topic>Mountains</topic><topic>Nematodes</topic><topic>Nitrates</topic><topic>Parameters</topic><topic>Polar environments</topic><topic>Precipitation</topic><topic>Regression analysis</topic><topic>Salt</topic><topic>Salts</topic><topic>Satellites</topic><topic>Soil</topic><topic>Soil analysis</topic><topic>Soil moisture</topic><topic>Soils</topic><topic>Valleys</topic><topic>Water</topic><topic>Water chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diaz, Melisa A</creatorcontrib><creatorcontrib>Gardner, Christopher B</creatorcontrib><creatorcontrib>Welch, Susan A</creatorcontrib><creatorcontrib>Jackson, W. Andrew</creatorcontrib><creatorcontrib>Adams, Byron J</creatorcontrib><creatorcontrib>Wall, Diana H</creatorcontrib><creatorcontrib>Hogg, Ian D</creatorcontrib><creatorcontrib>Fierer, Noah</creatorcontrib><creatorcontrib>Lyons, W. Berry</creatorcontrib><collection>CrossRef</collection><collection>Science in Context</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Biogeosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diaz, Melisa A</au><au>Gardner, Christopher B</au><au>Welch, Susan A</au><au>Jackson, W. Andrew</au><au>Adams, Byron J</au><au>Wall, Diana H</au><au>Hogg, Ian D</au><au>Fierer, Noah</au><au>Lyons, W. Berry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geochemical zones and environmental gradients for soils from the central Transantarctic Mountains, Antarctica</atitle><jtitle>Biogeosciences</jtitle><date>2021-03-09</date><risdate>2021</risdate><volume>18</volume><issue>5</issue><spage>1629</spage><epage>1644</epage><pages>1629-1644</pages><issn>1726-4189</issn><issn>1726-4170</issn><eissn>1726-4189</eissn><abstract>Previous studies have established links between biodiversity and soil geochemistry in the McMurdo Dry Valleys, Antarctica, where environmental gradients are important determinants of soil biodiversity. However, these gradients are not well established in the central Transantarctic Mountains, which are thought to represent some of the least hospitable Antarctic soils. We analyzed 220 samples from 11 ice-free areas along the Shackleton Glacier (∼ 85∘ S), a major outlet glacier of the East Antarctic Ice Sheet. We established three zones of distinct geochemical gradients near the head of the glacier (upper), its central part (middle), and at the mouth (lower). The upper zone had the highest water-soluble salt concentrations with total salt concentrations exceeding 80 000 µg g−1, while the lower zone had the lowest water-soluble N:P ratios, suggesting that, in addition to other parameters (such as proximity to water and/or ice), the lower zone likely represents the most favorable ecological habitats. Given the strong dependence of geochemistry on geographic parameters, we developed multiple linear regression and random forest models to predict soil geochemical trends given latitude, longitude, elevation, distance from the coast, distance from the glacier, and soil moisture (variables which can be inferred from remote measurements). Confidence in our random forest model predictions was moderately high with R2 values for total water-soluble salts, water-soluble N:P, ClO4-, and ClO3- of 0.81, 0.88, 0.78, and 0.74, respectively. These modeling results can be used to predict geochemical gradients and estimate salt concentrations for other Transantarctic Mountain soils, information that can ultimately be used to better predict distributions of soil biota in this remote region.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/bg-18-1629-2021</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-0400-3754</orcidid><orcidid>https://orcid.org/0000-0001-6657-358X</orcidid><orcidid>https://orcid.org/0000-0002-9466-5235</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1726-4189
ispartof Biogeosciences, 2021-03, Vol.18 (5), p.1629-1644
issn 1726-4189
1726-4170
1726-4189
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_e71c66bc17914a0fbdd188d1949659da
source Access via ProQuest (Open Access); DOAJ Directory of Open Access Journals
subjects Analysis
Antarctic glaciers
Antarctic ice sheet
Biodiversity
Biota
Deserts
Distance
Elevation
Environmental aspects
Environmental gradient
Geochemistry
Glaciation
Glaciers
Gradients
Ice sheets
Mathematical models
Mountain soils
Mountains
Nematodes
Nitrates
Parameters
Polar environments
Precipitation
Regression analysis
Salt
Salts
Satellites
Soil
Soil analysis
Soil moisture
Soils
Valleys
Water
Water chemistry
title Geochemical zones and environmental gradients for soils from the central Transantarctic Mountains, Antarctica
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T15%3A55%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geochemical%20zones%20and%20environmental%20gradients%20for%20soils%20from%20the%20central%20Transantarctic%20Mountains,%20Antarctica&rft.jtitle=Biogeosciences&rft.au=Diaz,%20Melisa%20A&rft.date=2021-03-09&rft.volume=18&rft.issue=5&rft.spage=1629&rft.epage=1644&rft.pages=1629-1644&rft.issn=1726-4189&rft.eissn=1726-4189&rft_id=info:doi/10.5194/bg-18-1629-2021&rft_dat=%3Cgale_doaj_%3EA654392192%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c477t-6663b3d32647d7ba863c11d892d2a3bc24667a340ab72d9bc949115fab1156d13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2498899733&rft_id=info:pmid/&rft_galeid=A654392192&rfr_iscdi=true