Loading…
Geochemical zones and environmental gradients for soils from the central Transantarctic Mountains, Antarctica
Previous studies have established links between biodiversity and soil geochemistry in the McMurdo Dry Valleys, Antarctica, where environmental gradients are important determinants of soil biodiversity. However, these gradients are not well established in the central Transantarctic Mountains, which a...
Saved in:
Published in: | Biogeosciences 2021-03, Vol.18 (5), p.1629-1644 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c477t-6663b3d32647d7ba863c11d892d2a3bc24667a340ab72d9bc949115fab1156d13 |
---|---|
cites | cdi_FETCH-LOGICAL-c477t-6663b3d32647d7ba863c11d892d2a3bc24667a340ab72d9bc949115fab1156d13 |
container_end_page | 1644 |
container_issue | 5 |
container_start_page | 1629 |
container_title | Biogeosciences |
container_volume | 18 |
creator | Diaz, Melisa A Gardner, Christopher B Welch, Susan A Jackson, W. Andrew Adams, Byron J Wall, Diana H Hogg, Ian D Fierer, Noah Lyons, W. Berry |
description | Previous studies have established links between
biodiversity and soil geochemistry in the McMurdo Dry Valleys, Antarctica,
where environmental gradients are important determinants of soil
biodiversity. However, these gradients are not well established in the
central Transantarctic Mountains, which are thought to represent some of the
least hospitable Antarctic soils. We analyzed 220 samples from 11 ice-free
areas along the Shackleton Glacier (∼ 85∘ S), a
major outlet glacier of the East Antarctic Ice Sheet. We established three
zones of distinct geochemical gradients near the head of the glacier
(upper), its central part (middle), and at the mouth (lower). The upper zone had the
highest water-soluble salt concentrations with total salt concentrations
exceeding 80 000 µg g−1, while the lower zone had the lowest
water-soluble N:P ratios, suggesting that, in addition to other parameters
(such as proximity to water and/or ice), the lower zone likely represents the most
favorable ecological habitats. Given the strong dependence of geochemistry
on geographic parameters, we developed multiple linear regression and random
forest models to predict soil geochemical trends given latitude, longitude,
elevation, distance from the coast, distance from the glacier, and soil
moisture (variables which can be inferred from remote measurements).
Confidence in our random forest model predictions was moderately high with
R2 values for total water-soluble salts, water-soluble N:P,
ClO4-, and ClO3- of 0.81, 0.88, 0.78, and 0.74,
respectively. These modeling results can be used to predict geochemical
gradients and estimate salt concentrations for other Transantarctic Mountain
soils, information that can ultimately be used to better predict
distributions of soil biota in this remote region. |
doi_str_mv | 10.5194/bg-18-1629-2021 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e71c66bc17914a0fbdd188d1949659da</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A654392192</galeid><doaj_id>oai_doaj_org_article_e71c66bc17914a0fbdd188d1949659da</doaj_id><sourcerecordid>A654392192</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-6663b3d32647d7ba863c11d892d2a3bc24667a340ab72d9bc949115fab1156d13</originalsourceid><addsrcrecordid>eNptksuLFDEQxhtRcF09e23wJNi7XUkmj-Ow6DqwIuh6DpVH92aY7qxJj6h_vTWOrwEJJMWXX31UKtU0z6G_WIERl27sQHcgmelYz-BBcwaKyU6ANg__iR83T2rd9j3XvV6dNdN1zP4uTsnjrv2e51hbnEMb5y-p5HmK80L6WDAkCms75NLWnHYUlTy1y11sPV0Ugm4LzhWJL35Jvn2X9xSnub5q179FfNo8GnBX47Nf53nz6c3r26u33c37683V-qbzQqmlk1JyxwNnUqigHGrJPUDQhgWG3HkmpFTIRY9OsWCcN8IArAZ0tMsA_LzZHH1Dxq29L2nC8s1mTPankMtosVBBu2ijAi-l86AMCOwHFwJoHaijRq5MQPJ6cfS6L_nzPtbFbvO-zFS-ZcJobYzi_C81IpmmecjUFD-l6u1argQ3DAwj6uI_FK1w-AHq_pBIP0l4eZJAzBK_LiPua7Wbjx9O2csj60uutcThz8Oht4cRsW60oO1hROxhRPgP1MCtBA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2498899733</pqid></control><display><type>article</type><title>Geochemical zones and environmental gradients for soils from the central Transantarctic Mountains, Antarctica</title><source>Access via ProQuest (Open Access)</source><source>DOAJ Directory of Open Access Journals</source><creator>Diaz, Melisa A ; Gardner, Christopher B ; Welch, Susan A ; Jackson, W. Andrew ; Adams, Byron J ; Wall, Diana H ; Hogg, Ian D ; Fierer, Noah ; Lyons, W. Berry</creator><creatorcontrib>Diaz, Melisa A ; Gardner, Christopher B ; Welch, Susan A ; Jackson, W. Andrew ; Adams, Byron J ; Wall, Diana H ; Hogg, Ian D ; Fierer, Noah ; Lyons, W. Berry</creatorcontrib><description>Previous studies have established links between
biodiversity and soil geochemistry in the McMurdo Dry Valleys, Antarctica,
where environmental gradients are important determinants of soil
biodiversity. However, these gradients are not well established in the
central Transantarctic Mountains, which are thought to represent some of the
least hospitable Antarctic soils. We analyzed 220 samples from 11 ice-free
areas along the Shackleton Glacier (∼ 85∘ S), a
major outlet glacier of the East Antarctic Ice Sheet. We established three
zones of distinct geochemical gradients near the head of the glacier
(upper), its central part (middle), and at the mouth (lower). The upper zone had the
highest water-soluble salt concentrations with total salt concentrations
exceeding 80 000 µg g−1, while the lower zone had the lowest
water-soluble N:P ratios, suggesting that, in addition to other parameters
(such as proximity to water and/or ice), the lower zone likely represents the most
favorable ecological habitats. Given the strong dependence of geochemistry
on geographic parameters, we developed multiple linear regression and random
forest models to predict soil geochemical trends given latitude, longitude,
elevation, distance from the coast, distance from the glacier, and soil
moisture (variables which can be inferred from remote measurements).
Confidence in our random forest model predictions was moderately high with
R2 values for total water-soluble salts, water-soluble N:P,
ClO4-, and ClO3- of 0.81, 0.88, 0.78, and 0.74,
respectively. These modeling results can be used to predict geochemical
gradients and estimate salt concentrations for other Transantarctic Mountain
soils, information that can ultimately be used to better predict
distributions of soil biota in this remote region.</description><identifier>ISSN: 1726-4189</identifier><identifier>ISSN: 1726-4170</identifier><identifier>EISSN: 1726-4189</identifier><identifier>DOI: 10.5194/bg-18-1629-2021</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Analysis ; Antarctic glaciers ; Antarctic ice sheet ; Biodiversity ; Biota ; Deserts ; Distance ; Elevation ; Environmental aspects ; Environmental gradient ; Geochemistry ; Glaciation ; Glaciers ; Gradients ; Ice sheets ; Mathematical models ; Mountain soils ; Mountains ; Nematodes ; Nitrates ; Parameters ; Polar environments ; Precipitation ; Regression analysis ; Salt ; Salts ; Satellites ; Soil ; Soil analysis ; Soil moisture ; Soils ; Valleys ; Water ; Water chemistry</subject><ispartof>Biogeosciences, 2021-03, Vol.18 (5), p.1629-1644</ispartof><rights>COPYRIGHT 2021 Copernicus GmbH</rights><rights>2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-6663b3d32647d7ba863c11d892d2a3bc24667a340ab72d9bc949115fab1156d13</citedby><cites>FETCH-LOGICAL-c477t-6663b3d32647d7ba863c11d892d2a3bc24667a340ab72d9bc949115fab1156d13</cites><orcidid>0000-0003-0400-3754 ; 0000-0001-6657-358X ; 0000-0002-9466-5235</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2498899733/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2498899733?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Diaz, Melisa A</creatorcontrib><creatorcontrib>Gardner, Christopher B</creatorcontrib><creatorcontrib>Welch, Susan A</creatorcontrib><creatorcontrib>Jackson, W. Andrew</creatorcontrib><creatorcontrib>Adams, Byron J</creatorcontrib><creatorcontrib>Wall, Diana H</creatorcontrib><creatorcontrib>Hogg, Ian D</creatorcontrib><creatorcontrib>Fierer, Noah</creatorcontrib><creatorcontrib>Lyons, W. Berry</creatorcontrib><title>Geochemical zones and environmental gradients for soils from the central Transantarctic Mountains, Antarctica</title><title>Biogeosciences</title><description>Previous studies have established links between
biodiversity and soil geochemistry in the McMurdo Dry Valleys, Antarctica,
where environmental gradients are important determinants of soil
biodiversity. However, these gradients are not well established in the
central Transantarctic Mountains, which are thought to represent some of the
least hospitable Antarctic soils. We analyzed 220 samples from 11 ice-free
areas along the Shackleton Glacier (∼ 85∘ S), a
major outlet glacier of the East Antarctic Ice Sheet. We established three
zones of distinct geochemical gradients near the head of the glacier
(upper), its central part (middle), and at the mouth (lower). The upper zone had the
highest water-soluble salt concentrations with total salt concentrations
exceeding 80 000 µg g−1, while the lower zone had the lowest
water-soluble N:P ratios, suggesting that, in addition to other parameters
(such as proximity to water and/or ice), the lower zone likely represents the most
favorable ecological habitats. Given the strong dependence of geochemistry
on geographic parameters, we developed multiple linear regression and random
forest models to predict soil geochemical trends given latitude, longitude,
elevation, distance from the coast, distance from the glacier, and soil
moisture (variables which can be inferred from remote measurements).
Confidence in our random forest model predictions was moderately high with
R2 values for total water-soluble salts, water-soluble N:P,
ClO4-, and ClO3- of 0.81, 0.88, 0.78, and 0.74,
respectively. These modeling results can be used to predict geochemical
gradients and estimate salt concentrations for other Transantarctic Mountain
soils, information that can ultimately be used to better predict
distributions of soil biota in this remote region.</description><subject>Analysis</subject><subject>Antarctic glaciers</subject><subject>Antarctic ice sheet</subject><subject>Biodiversity</subject><subject>Biota</subject><subject>Deserts</subject><subject>Distance</subject><subject>Elevation</subject><subject>Environmental aspects</subject><subject>Environmental gradient</subject><subject>Geochemistry</subject><subject>Glaciation</subject><subject>Glaciers</subject><subject>Gradients</subject><subject>Ice sheets</subject><subject>Mathematical models</subject><subject>Mountain soils</subject><subject>Mountains</subject><subject>Nematodes</subject><subject>Nitrates</subject><subject>Parameters</subject><subject>Polar environments</subject><subject>Precipitation</subject><subject>Regression analysis</subject><subject>Salt</subject><subject>Salts</subject><subject>Satellites</subject><subject>Soil</subject><subject>Soil analysis</subject><subject>Soil moisture</subject><subject>Soils</subject><subject>Valleys</subject><subject>Water</subject><subject>Water chemistry</subject><issn>1726-4189</issn><issn>1726-4170</issn><issn>1726-4189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptksuLFDEQxhtRcF09e23wJNi7XUkmj-Ow6DqwIuh6DpVH92aY7qxJj6h_vTWOrwEJJMWXX31UKtU0z6G_WIERl27sQHcgmelYz-BBcwaKyU6ANg__iR83T2rd9j3XvV6dNdN1zP4uTsnjrv2e51hbnEMb5y-p5HmK80L6WDAkCms75NLWnHYUlTy1y11sPV0Ugm4LzhWJL35Jvn2X9xSnub5q179FfNo8GnBX47Nf53nz6c3r26u33c37683V-qbzQqmlk1JyxwNnUqigHGrJPUDQhgWG3HkmpFTIRY9OsWCcN8IArAZ0tMsA_LzZHH1Dxq29L2nC8s1mTPankMtosVBBu2ijAi-l86AMCOwHFwJoHaijRq5MQPJ6cfS6L_nzPtbFbvO-zFS-ZcJobYzi_C81IpmmecjUFD-l6u1argQ3DAwj6uI_FK1w-AHq_pBIP0l4eZJAzBK_LiPua7Wbjx9O2csj60uutcThz8Oht4cRsW60oO1hROxhRPgP1MCtBA</recordid><startdate>20210309</startdate><enddate>20210309</enddate><creator>Diaz, Melisa A</creator><creator>Gardner, Christopher B</creator><creator>Welch, Susan A</creator><creator>Jackson, W. Andrew</creator><creator>Adams, Byron J</creator><creator>Wall, Diana H</creator><creator>Hogg, Ian D</creator><creator>Fierer, Noah</creator><creator>Lyons, W. Berry</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7QO</scope><scope>7SN</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H95</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L6V</scope><scope>LK8</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0400-3754</orcidid><orcidid>https://orcid.org/0000-0001-6657-358X</orcidid><orcidid>https://orcid.org/0000-0002-9466-5235</orcidid></search><sort><creationdate>20210309</creationdate><title>Geochemical zones and environmental gradients for soils from the central Transantarctic Mountains, Antarctica</title><author>Diaz, Melisa A ; Gardner, Christopher B ; Welch, Susan A ; Jackson, W. Andrew ; Adams, Byron J ; Wall, Diana H ; Hogg, Ian D ; Fierer, Noah ; Lyons, W. Berry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-6663b3d32647d7ba863c11d892d2a3bc24667a340ab72d9bc949115fab1156d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Antarctic glaciers</topic><topic>Antarctic ice sheet</topic><topic>Biodiversity</topic><topic>Biota</topic><topic>Deserts</topic><topic>Distance</topic><topic>Elevation</topic><topic>Environmental aspects</topic><topic>Environmental gradient</topic><topic>Geochemistry</topic><topic>Glaciation</topic><topic>Glaciers</topic><topic>Gradients</topic><topic>Ice sheets</topic><topic>Mathematical models</topic><topic>Mountain soils</topic><topic>Mountains</topic><topic>Nematodes</topic><topic>Nitrates</topic><topic>Parameters</topic><topic>Polar environments</topic><topic>Precipitation</topic><topic>Regression analysis</topic><topic>Salt</topic><topic>Salts</topic><topic>Satellites</topic><topic>Soil</topic><topic>Soil analysis</topic><topic>Soil moisture</topic><topic>Soils</topic><topic>Valleys</topic><topic>Water</topic><topic>Water chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diaz, Melisa A</creatorcontrib><creatorcontrib>Gardner, Christopher B</creatorcontrib><creatorcontrib>Welch, Susan A</creatorcontrib><creatorcontrib>Jackson, W. Andrew</creatorcontrib><creatorcontrib>Adams, Byron J</creatorcontrib><creatorcontrib>Wall, Diana H</creatorcontrib><creatorcontrib>Hogg, Ian D</creatorcontrib><creatorcontrib>Fierer, Noah</creatorcontrib><creatorcontrib>Lyons, W. Berry</creatorcontrib><collection>CrossRef</collection><collection>Science in Context</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Biogeosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diaz, Melisa A</au><au>Gardner, Christopher B</au><au>Welch, Susan A</au><au>Jackson, W. Andrew</au><au>Adams, Byron J</au><au>Wall, Diana H</au><au>Hogg, Ian D</au><au>Fierer, Noah</au><au>Lyons, W. Berry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geochemical zones and environmental gradients for soils from the central Transantarctic Mountains, Antarctica</atitle><jtitle>Biogeosciences</jtitle><date>2021-03-09</date><risdate>2021</risdate><volume>18</volume><issue>5</issue><spage>1629</spage><epage>1644</epage><pages>1629-1644</pages><issn>1726-4189</issn><issn>1726-4170</issn><eissn>1726-4189</eissn><abstract>Previous studies have established links between
biodiversity and soil geochemistry in the McMurdo Dry Valleys, Antarctica,
where environmental gradients are important determinants of soil
biodiversity. However, these gradients are not well established in the
central Transantarctic Mountains, which are thought to represent some of the
least hospitable Antarctic soils. We analyzed 220 samples from 11 ice-free
areas along the Shackleton Glacier (∼ 85∘ S), a
major outlet glacier of the East Antarctic Ice Sheet. We established three
zones of distinct geochemical gradients near the head of the glacier
(upper), its central part (middle), and at the mouth (lower). The upper zone had the
highest water-soluble salt concentrations with total salt concentrations
exceeding 80 000 µg g−1, while the lower zone had the lowest
water-soluble N:P ratios, suggesting that, in addition to other parameters
(such as proximity to water and/or ice), the lower zone likely represents the most
favorable ecological habitats. Given the strong dependence of geochemistry
on geographic parameters, we developed multiple linear regression and random
forest models to predict soil geochemical trends given latitude, longitude,
elevation, distance from the coast, distance from the glacier, and soil
moisture (variables which can be inferred from remote measurements).
Confidence in our random forest model predictions was moderately high with
R2 values for total water-soluble salts, water-soluble N:P,
ClO4-, and ClO3- of 0.81, 0.88, 0.78, and 0.74,
respectively. These modeling results can be used to predict geochemical
gradients and estimate salt concentrations for other Transantarctic Mountain
soils, information that can ultimately be used to better predict
distributions of soil biota in this remote region.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/bg-18-1629-2021</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-0400-3754</orcidid><orcidid>https://orcid.org/0000-0001-6657-358X</orcidid><orcidid>https://orcid.org/0000-0002-9466-5235</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1726-4189 |
ispartof | Biogeosciences, 2021-03, Vol.18 (5), p.1629-1644 |
issn | 1726-4189 1726-4170 1726-4189 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_e71c66bc17914a0fbdd188d1949659da |
source | Access via ProQuest (Open Access); DOAJ Directory of Open Access Journals |
subjects | Analysis Antarctic glaciers Antarctic ice sheet Biodiversity Biota Deserts Distance Elevation Environmental aspects Environmental gradient Geochemistry Glaciation Glaciers Gradients Ice sheets Mathematical models Mountain soils Mountains Nematodes Nitrates Parameters Polar environments Precipitation Regression analysis Salt Salts Satellites Soil Soil analysis Soil moisture Soils Valleys Water Water chemistry |
title | Geochemical zones and environmental gradients for soils from the central Transantarctic Mountains, Antarctica |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T15%3A55%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geochemical%20zones%20and%20environmental%20gradients%20for%20soils%20from%20the%20central%20Transantarctic%20Mountains,%20Antarctica&rft.jtitle=Biogeosciences&rft.au=Diaz,%20Melisa%20A&rft.date=2021-03-09&rft.volume=18&rft.issue=5&rft.spage=1629&rft.epage=1644&rft.pages=1629-1644&rft.issn=1726-4189&rft.eissn=1726-4189&rft_id=info:doi/10.5194/bg-18-1629-2021&rft_dat=%3Cgale_doaj_%3EA654392192%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c477t-6663b3d32647d7ba863c11d892d2a3bc24667a340ab72d9bc949115fab1156d13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2498899733&rft_id=info:pmid/&rft_galeid=A654392192&rfr_iscdi=true |