Loading…
Nanotubes in Chitin Mode Locker for Passive Mode−Locked Fibre Laser in 2.0 µm Region
This research demonstrated an ultrafast passively mode-locked thulium-holmium doped fibre laser (THDFL) using a carbon nanotube (CNT)-chitin composite film as a saturable absorber (SA). The CNTs were fabricated using ultrasonic-assisted liquid-phase exfoliation, and the chitin biopolymer was derived...
Saved in:
Published in: | Photonics 2023-02, Vol.10 (3), p.257 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c2887-e66c8ce9430e0b79fe8d394b1bdb3d142d025ff679e1034e201f90b6c8567d943 |
container_end_page | |
container_issue | 3 |
container_start_page | 257 |
container_title | Photonics |
container_volume | 10 |
creator | Mohamad Rashid, Nur Nadhirah Ahmad, Harith Ismail, Mohammad Faizal Lokman, Muhammad Quisar Zuikafly, Siti Nur Fatin Yahaya, Hafizal Nordin, Nur Azmah Wan Nawawi, Wan Mohd Fazli Ahmad, Fauzan |
description | This research demonstrated an ultrafast passively mode-locked thulium-holmium doped fibre laser (THDFL) using a carbon nanotube (CNT)-chitin composite film as a saturable absorber (SA). The CNTs were fabricated using ultrasonic-assisted liquid-phase exfoliation, and the chitin biopolymer was derived from oyster mushrooms (Pleurotus Ostreatus). The free-standing SA successfully performed a mode-locking operation at a threshold input pump power of 203 mW with an operating wavelength of 1908.53 nm. The generated mode-locked pulses had repetition rate, pulse width, and signal-to-noise ratio (SNR) values of 16 MHz, 1.1 ps, and 69 dB, respectively. The work demonstrates the potential of CNTs embedded in chitin biopolymer as a sustainable and environmentally friendly SA for a wide range of applications, particularly for pulsed lasers. |
doi_str_mv | 10.3390/photonics10030257 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e733a4e200b642a6a1671b808f837b26</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A743770142</galeid><doaj_id>oai_doaj_org_article_e733a4e200b642a6a1671b808f837b26</doaj_id><sourcerecordid>A743770142</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2887-e66c8ce9430e0b79fe8d394b1bdb3d142d025ff679e1034e201f90b6c8567d943</originalsourceid><addsrcrecordid>eNplkdtKAzEQhhdRsKgP4N2C1605bDfZSymeoB4QxcuQw6SmtpuabAXfwGvfxRfwUXwSx1ZEMLmYYfJ_PzOZotinZMB5Qw4XD7GLbbCZEsIJG4qNosc4qfq14GzzT75d7OU8JXgayuWw6hX3l7qN3dJALkNbjh5Ch-EiOijH0T5CKn1M5bXOOTzDqv75-rZ6ceVJMAllOqMKITYg5cf7vLyBSYjtbrHl9SzD3k_cKe5Ojm9HZ_3x1en56Gjct0xK0Ye6ttJCU3ECxIjGg3S8qQw1znBHK-ZwHO9r0QAlvAJGqG-IQWhYC4fYTnG-9nVRT9UihblOLyrqoFaFmCZKpy7YGSgQnOtvC-QrpmtNa0GNJNJLLgyr0etg7bVI8WkJuVPTuEwttq-YaKjAbxMSVYO1aqLRNLQ-dklbvA7mwcYWfMD6kai4EAQnQICuAZtizgn8b5uUqO_9qX_741_gmI3l</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2791700078</pqid></control><display><type>article</type><title>Nanotubes in Chitin Mode Locker for Passive Mode−Locked Fibre Laser in 2.0 µm Region</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>EZB Electronic Journals Library</source><creator>Mohamad Rashid, Nur Nadhirah ; Ahmad, Harith ; Ismail, Mohammad Faizal ; Lokman, Muhammad Quisar ; Zuikafly, Siti Nur Fatin ; Yahaya, Hafizal ; Nordin, Nur Azmah ; Wan Nawawi, Wan Mohd Fazli ; Ahmad, Fauzan</creator><creatorcontrib>Mohamad Rashid, Nur Nadhirah ; Ahmad, Harith ; Ismail, Mohammad Faizal ; Lokman, Muhammad Quisar ; Zuikafly, Siti Nur Fatin ; Yahaya, Hafizal ; Nordin, Nur Azmah ; Wan Nawawi, Wan Mohd Fazli ; Ahmad, Fauzan</creatorcontrib><description>This research demonstrated an ultrafast passively mode-locked thulium-holmium doped fibre laser (THDFL) using a carbon nanotube (CNT)-chitin composite film as a saturable absorber (SA). The CNTs were fabricated using ultrasonic-assisted liquid-phase exfoliation, and the chitin biopolymer was derived from oyster mushrooms (Pleurotus Ostreatus). The free-standing SA successfully performed a mode-locking operation at a threshold input pump power of 203 mW with an operating wavelength of 1908.53 nm. The generated mode-locked pulses had repetition rate, pulse width, and signal-to-noise ratio (SNR) values of 16 MHz, 1.1 ps, and 69 dB, respectively. The work demonstrates the potential of CNTs embedded in chitin biopolymer as a sustainable and environmentally friendly SA for a wide range of applications, particularly for pulsed lasers.</description><identifier>ISSN: 2304-6732</identifier><identifier>EISSN: 2304-6732</identifier><identifier>DOI: 10.3390/photonics10030257</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Biopolymers ; Carbon nanotubes ; Chitin ; Doped fibers ; Fiber lasers ; Graphene ; Heat resistance ; Holmium ; Lasers ; Liquid phases ; Microscopy ; Mode locking ; Mushrooms ; Nanotechnology ; Nanotubes ; Pleurotus ostreatus ; Polymers ; Pulse duration ; Pulsed lasers ; saturable absorber ; Signal to noise ratio ; Thulium ; thulium-holmium doped fiber laser</subject><ispartof>Photonics, 2023-02, Vol.10 (3), p.257</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2887-e66c8ce9430e0b79fe8d394b1bdb3d142d025ff679e1034e201f90b6c8567d943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2791700078/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2791700078?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Mohamad Rashid, Nur Nadhirah</creatorcontrib><creatorcontrib>Ahmad, Harith</creatorcontrib><creatorcontrib>Ismail, Mohammad Faizal</creatorcontrib><creatorcontrib>Lokman, Muhammad Quisar</creatorcontrib><creatorcontrib>Zuikafly, Siti Nur Fatin</creatorcontrib><creatorcontrib>Yahaya, Hafizal</creatorcontrib><creatorcontrib>Nordin, Nur Azmah</creatorcontrib><creatorcontrib>Wan Nawawi, Wan Mohd Fazli</creatorcontrib><creatorcontrib>Ahmad, Fauzan</creatorcontrib><title>Nanotubes in Chitin Mode Locker for Passive Mode−Locked Fibre Laser in 2.0 µm Region</title><title>Photonics</title><description>This research demonstrated an ultrafast passively mode-locked thulium-holmium doped fibre laser (THDFL) using a carbon nanotube (CNT)-chitin composite film as a saturable absorber (SA). The CNTs were fabricated using ultrasonic-assisted liquid-phase exfoliation, and the chitin biopolymer was derived from oyster mushrooms (Pleurotus Ostreatus). The free-standing SA successfully performed a mode-locking operation at a threshold input pump power of 203 mW with an operating wavelength of 1908.53 nm. The generated mode-locked pulses had repetition rate, pulse width, and signal-to-noise ratio (SNR) values of 16 MHz, 1.1 ps, and 69 dB, respectively. The work demonstrates the potential of CNTs embedded in chitin biopolymer as a sustainable and environmentally friendly SA for a wide range of applications, particularly for pulsed lasers.</description><subject>Biopolymers</subject><subject>Carbon nanotubes</subject><subject>Chitin</subject><subject>Doped fibers</subject><subject>Fiber lasers</subject><subject>Graphene</subject><subject>Heat resistance</subject><subject>Holmium</subject><subject>Lasers</subject><subject>Liquid phases</subject><subject>Microscopy</subject><subject>Mode locking</subject><subject>Mushrooms</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Pleurotus ostreatus</subject><subject>Polymers</subject><subject>Pulse duration</subject><subject>Pulsed lasers</subject><subject>saturable absorber</subject><subject>Signal to noise ratio</subject><subject>Thulium</subject><subject>thulium-holmium doped fiber laser</subject><issn>2304-6732</issn><issn>2304-6732</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNplkdtKAzEQhhdRsKgP4N2C1605bDfZSymeoB4QxcuQw6SmtpuabAXfwGvfxRfwUXwSx1ZEMLmYYfJ_PzOZotinZMB5Qw4XD7GLbbCZEsIJG4qNosc4qfq14GzzT75d7OU8JXgayuWw6hX3l7qN3dJALkNbjh5Ch-EiOijH0T5CKn1M5bXOOTzDqv75-rZ6ceVJMAllOqMKITYg5cf7vLyBSYjtbrHl9SzD3k_cKe5Ojm9HZ_3x1en56Gjct0xK0Ye6ttJCU3ECxIjGg3S8qQw1znBHK-ZwHO9r0QAlvAJGqG-IQWhYC4fYTnG-9nVRT9UihblOLyrqoFaFmCZKpy7YGSgQnOtvC-QrpmtNa0GNJNJLLgyr0etg7bVI8WkJuVPTuEwttq-YaKjAbxMSVYO1aqLRNLQ-dklbvA7mwcYWfMD6kai4EAQnQICuAZtizgn8b5uUqO_9qX_741_gmI3l</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Mohamad Rashid, Nur Nadhirah</creator><creator>Ahmad, Harith</creator><creator>Ismail, Mohammad Faizal</creator><creator>Lokman, Muhammad Quisar</creator><creator>Zuikafly, Siti Nur Fatin</creator><creator>Yahaya, Hafizal</creator><creator>Nordin, Nur Azmah</creator><creator>Wan Nawawi, Wan Mohd Fazli</creator><creator>Ahmad, Fauzan</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope></search><sort><creationdate>20230201</creationdate><title>Nanotubes in Chitin Mode Locker for Passive Mode−Locked Fibre Laser in 2.0 µm Region</title><author>Mohamad Rashid, Nur Nadhirah ; Ahmad, Harith ; Ismail, Mohammad Faizal ; Lokman, Muhammad Quisar ; Zuikafly, Siti Nur Fatin ; Yahaya, Hafizal ; Nordin, Nur Azmah ; Wan Nawawi, Wan Mohd Fazli ; Ahmad, Fauzan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2887-e66c8ce9430e0b79fe8d394b1bdb3d142d025ff679e1034e201f90b6c8567d943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biopolymers</topic><topic>Carbon nanotubes</topic><topic>Chitin</topic><topic>Doped fibers</topic><topic>Fiber lasers</topic><topic>Graphene</topic><topic>Heat resistance</topic><topic>Holmium</topic><topic>Lasers</topic><topic>Liquid phases</topic><topic>Microscopy</topic><topic>Mode locking</topic><topic>Mushrooms</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Pleurotus ostreatus</topic><topic>Polymers</topic><topic>Pulse duration</topic><topic>Pulsed lasers</topic><topic>saturable absorber</topic><topic>Signal to noise ratio</topic><topic>Thulium</topic><topic>thulium-holmium doped fiber laser</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohamad Rashid, Nur Nadhirah</creatorcontrib><creatorcontrib>Ahmad, Harith</creatorcontrib><creatorcontrib>Ismail, Mohammad Faizal</creatorcontrib><creatorcontrib>Lokman, Muhammad Quisar</creatorcontrib><creatorcontrib>Zuikafly, Siti Nur Fatin</creatorcontrib><creatorcontrib>Yahaya, Hafizal</creatorcontrib><creatorcontrib>Nordin, Nur Azmah</creatorcontrib><creatorcontrib>Wan Nawawi, Wan Mohd Fazli</creatorcontrib><creatorcontrib>Ahmad, Fauzan</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohamad Rashid, Nur Nadhirah</au><au>Ahmad, Harith</au><au>Ismail, Mohammad Faizal</au><au>Lokman, Muhammad Quisar</au><au>Zuikafly, Siti Nur Fatin</au><au>Yahaya, Hafizal</au><au>Nordin, Nur Azmah</au><au>Wan Nawawi, Wan Mohd Fazli</au><au>Ahmad, Fauzan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanotubes in Chitin Mode Locker for Passive Mode−Locked Fibre Laser in 2.0 µm Region</atitle><jtitle>Photonics</jtitle><date>2023-02-01</date><risdate>2023</risdate><volume>10</volume><issue>3</issue><spage>257</spage><pages>257-</pages><issn>2304-6732</issn><eissn>2304-6732</eissn><abstract>This research demonstrated an ultrafast passively mode-locked thulium-holmium doped fibre laser (THDFL) using a carbon nanotube (CNT)-chitin composite film as a saturable absorber (SA). The CNTs were fabricated using ultrasonic-assisted liquid-phase exfoliation, and the chitin biopolymer was derived from oyster mushrooms (Pleurotus Ostreatus). The free-standing SA successfully performed a mode-locking operation at a threshold input pump power of 203 mW with an operating wavelength of 1908.53 nm. The generated mode-locked pulses had repetition rate, pulse width, and signal-to-noise ratio (SNR) values of 16 MHz, 1.1 ps, and 69 dB, respectively. The work demonstrates the potential of CNTs embedded in chitin biopolymer as a sustainable and environmentally friendly SA for a wide range of applications, particularly for pulsed lasers.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/photonics10030257</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2304-6732 |
ispartof | Photonics, 2023-02, Vol.10 (3), p.257 |
issn | 2304-6732 2304-6732 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_e733a4e200b642a6a1671b808f837b26 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); EZB Electronic Journals Library |
subjects | Biopolymers Carbon nanotubes Chitin Doped fibers Fiber lasers Graphene Heat resistance Holmium Lasers Liquid phases Microscopy Mode locking Mushrooms Nanotechnology Nanotubes Pleurotus ostreatus Polymers Pulse duration Pulsed lasers saturable absorber Signal to noise ratio Thulium thulium-holmium doped fiber laser |
title | Nanotubes in Chitin Mode Locker for Passive Mode−Locked Fibre Laser in 2.0 µm Region |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A37%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanotubes%20in%20Chitin%20Mode%20Locker%20for%20Passive%20Mode%E2%88%92Locked%20Fibre%20Laser%20in%202.0%20%C2%B5m%20Region&rft.jtitle=Photonics&rft.au=Mohamad%20Rashid,%20Nur%20Nadhirah&rft.date=2023-02-01&rft.volume=10&rft.issue=3&rft.spage=257&rft.pages=257-&rft.issn=2304-6732&rft.eissn=2304-6732&rft_id=info:doi/10.3390/photonics10030257&rft_dat=%3Cgale_doaj_%3EA743770142%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2887-e66c8ce9430e0b79fe8d394b1bdb3d142d025ff679e1034e201f90b6c8567d943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2791700078&rft_id=info:pmid/&rft_galeid=A743770142&rfr_iscdi=true |