Loading…
gamma-H2AX: Can it be established as a classical cancer prognostic factor?
Double-strand breaks are among the first procedures taking place in cancer formation and progression as a result of endogenic and exogenic factors. The histone variant H2AX undergoes phosphorylation at serine 139 due to double-strand breaks, and the gamma-H2AX is formatted as a result of genomic ins...
Saved in:
Published in: | Tumor Biology 2017-03, Vol.39 (3), p.1010428317695931-1010428317695931 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Double-strand breaks are among the first procedures taking place in cancer formation and progression as a result of endogenic and exogenic factors. The histone variant H2AX undergoes phosphorylation at serine 139 due to double-strand breaks, and the gamma-H2AX is formatted as a result of genomic instability. The detection of gamma-H2AX can potentially serve as a biomarker for transformation of normal tissue to premalignant and consequently to malignant tissues. gamma-H2AX has already been investigated in a variety of cancer types, including breast, lung, colon, cervix, and ovary cancers. The prognostic value of gamma-H2AX is indicated in certain cancer types, such as breast or endometrial cancer, but further investigation is needed to establish gamma-H2AX as a prognostic marker. This review outlines the role of gamma-H2AX in cell cycle, and its formation as a result of DNA damage. We investigate the role of gamma-H2AX formation in several cancer types and its correlation with other prognostic factors, and we try to find out whether it fulfills the requirements for its establishment as a classical cancer prognostic factor. |
---|---|
ISSN: | 1010-4283 1423-0380 |
DOI: | 10.1177/1010428317695931 |