Loading…

Study on the therapeutic potential of induced neural stem cells for Alzheimer's disease in mice

Induced neural stem cells (iNSCs), which have similar properties to neural stem cells and are able to self-proliferate and differentiate into neural cell lineages, are expected to be potential cells for the treatment of neurodegeneration disease. However, cell therapy based on iNSCs transplantation...

Full description

Saved in:
Bibliographic Details
Published in:Biological research 2024-11, Vol.57 (1), p.89-12, Article 89
Main Authors: Ji, Qiongqiong, Lv, Yuanhao, Hu, Bei, Su, Yue, Shaikh, Imran Ibrahim, Zhu, Xu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Induced neural stem cells (iNSCs), which have similar properties to neural stem cells and are able to self-proliferate and differentiate into neural cell lineages, are expected to be potential cells for the treatment of neurodegeneration disease. However, cell therapy based on iNSCs transplantation is limited by the inability to acquire sufficient quantities of iNSCs. Previous studies have found that mouse and human fibroblasts can be directly reprogrammed into iNSCs with a single factor, Sox2. Here, we induced mouse embryonic fibroblasts (MEFs) into iNSCs by combining valproic acid (VPA) with the induction factor Sox2, and the results showed that VPA significantly improved the conversion efficiency of fibroblasts to iNSCs. The iNSCs exhibited typical neurosphere-like structures that can express NSCs markers, such as Sox2, Nestin, Sox1, and Zbtb16, and could differentiate into neurons, astrocytes, and oligodendrocytes in vitro. Subsequently, the iNSCs were stereotactically transplanted into the hippocampus of APP/PS1 double transgenic mice (AD mice). Post-transplantation, the iNSCs showed long-term survival, migrated over long distances, and differentiated into multiple types of functional neurons and glial cells in vivo. Importantly, the cognitive abilities of APP/PS1 mice transplanted with iNSCs exhibited significant functional recovery. These findings suggest that VPA enhances the conversion efficiency of fibroblasts into iNSCs when used in combination with Sox2, and iNSCs hold promise as a potential donor material for transplantation therapy in Alzheimer's disease.
ISSN:0717-6287
0716-9760
0717-6287
DOI:10.1186/s40659-024-00568-0