Loading…
An Ultrashort-Term Net Load Forecasting Model Based on Phase Space Reconstruction and Deep Neural Network
Recently, a large number of distributed photovoltaic (PV) power generations have been connected to the power grid, which resulted in an increased fluctuation of the net load. Therefore, load forecasting has become more difficult. Considering the characteristics of the net load, an ultrashort-term fo...
Saved in:
Published in: | Applied sciences 2019-04, Vol.9 (7), p.1487 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c361t-a0bb02497a2dc883e9b16e7478039b62b8428f29ee692ece6672a22e537fd8803 |
---|---|
cites | cdi_FETCH-LOGICAL-c361t-a0bb02497a2dc883e9b16e7478039b62b8428f29ee692ece6672a22e537fd8803 |
container_end_page | |
container_issue | 7 |
container_start_page | 1487 |
container_title | Applied sciences |
container_volume | 9 |
creator | Mei, Fei Wu, Qingliang Shi, Tian Lu, Jixiang Pan, Yi Zheng, Jianyong |
description | Recently, a large number of distributed photovoltaic (PV) power generations have been connected to the power grid, which resulted in an increased fluctuation of the net load. Therefore, load forecasting has become more difficult. Considering the characteristics of the net load, an ultrashort-term forecasting model based on phase space reconstruction and deep neural network (DNN) is proposed, which can be divided into two steps. First, the phase space reconstruction of the net load time series data is performed using the C-C method. Second, the reconstructed data is fitted by the DNN to obtain the predicted value of the net load. The performance of this model is verified using real data. The accuracy is high in forecasting the net load under high PV penetration rate and different weather conditions. |
doi_str_mv | 10.3390/app9071487 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e745e7c1d63d472ab3714de6248be3ef</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e745e7c1d63d472ab3714de6248be3ef</doaj_id><sourcerecordid>2314413779</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-a0bb02497a2dc883e9b16e7478039b62b8428f29ee692ece6672a22e537fd8803</originalsourceid><addsrcrecordid>eNpNkclKBDEQhhtRUNSLTxDwJrRmM8vRbVQYF3TmHNJJtfbYdtokg_j2RkfUulRR9fNVUX9V7RF8yJjGR3YcNZaEK7lWbVEsRc04kev_6s1qN6UFLqEJUwRvVd3JgOZ9jjY9h5jrGcRXdAsZTYP1aBIiOJtyNzyhm-ChR6c2gUdhQPfPpUKPo3WAHsCFIeW4dLkrIzt4dA4wFs4y2v4L9x7iy0610do-we5P3q7mk4vZ2VU9vbu8PjuZ1o4JkmuLmwZTrqWl3inFQDdEgORSYaYbQRvFqWqpBhCaggMhJLWUwjGTrVdFtF1dr7g-2IUZY_dq44cJtjPfjRCfjI25cz2Ygj0G6YgXzPOCaVj5ngdBuWqAQVtY-yvWGMPbElI2i7CMQznfUEY4J0xKXVQHK5WLIaUI7e9Wgs2XM-bPGfYJ3EV_aw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2314413779</pqid></control><display><type>article</type><title>An Ultrashort-Term Net Load Forecasting Model Based on Phase Space Reconstruction and Deep Neural Network</title><source>Publicly Available Content Database</source><creator>Mei, Fei ; Wu, Qingliang ; Shi, Tian ; Lu, Jixiang ; Pan, Yi ; Zheng, Jianyong</creator><creatorcontrib>Mei, Fei ; Wu, Qingliang ; Shi, Tian ; Lu, Jixiang ; Pan, Yi ; Zheng, Jianyong</creatorcontrib><description>Recently, a large number of distributed photovoltaic (PV) power generations have been connected to the power grid, which resulted in an increased fluctuation of the net load. Therefore, load forecasting has become more difficult. Considering the characteristics of the net load, an ultrashort-term forecasting model based on phase space reconstruction and deep neural network (DNN) is proposed, which can be divided into two steps. First, the phase space reconstruction of the net load time series data is performed using the C-C method. Second, the reconstructed data is fitted by the DNN to obtain the predicted value of the net load. The performance of this model is verified using real data. The accuracy is high in forecasting the net load under high PV penetration rate and different weather conditions.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app9071487</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Artificial intelligence ; Debugging ; Decomposition ; deep neural network ; Distributed generation ; Electric power distribution ; Electric power generation ; Electrical engineering ; Electricity consumption ; Electricity distribution ; Energy sources ; Forecasting ; Machine learning ; net load forecasting ; Neural networks ; Optimization algorithms ; phase space reconstruction ; Power plants ; Power supplies ; Power supply ; Reconstruction ; Short term ; Time series ; Volatility</subject><ispartof>Applied sciences, 2019-04, Vol.9 (7), p.1487</ispartof><rights>2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-a0bb02497a2dc883e9b16e7478039b62b8428f29ee692ece6672a22e537fd8803</citedby><cites>FETCH-LOGICAL-c361t-a0bb02497a2dc883e9b16e7478039b62b8428f29ee692ece6672a22e537fd8803</cites><orcidid>0000-0001-5379-6522</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2314413779/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2314413779?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Mei, Fei</creatorcontrib><creatorcontrib>Wu, Qingliang</creatorcontrib><creatorcontrib>Shi, Tian</creatorcontrib><creatorcontrib>Lu, Jixiang</creatorcontrib><creatorcontrib>Pan, Yi</creatorcontrib><creatorcontrib>Zheng, Jianyong</creatorcontrib><title>An Ultrashort-Term Net Load Forecasting Model Based on Phase Space Reconstruction and Deep Neural Network</title><title>Applied sciences</title><description>Recently, a large number of distributed photovoltaic (PV) power generations have been connected to the power grid, which resulted in an increased fluctuation of the net load. Therefore, load forecasting has become more difficult. Considering the characteristics of the net load, an ultrashort-term forecasting model based on phase space reconstruction and deep neural network (DNN) is proposed, which can be divided into two steps. First, the phase space reconstruction of the net load time series data is performed using the C-C method. Second, the reconstructed data is fitted by the DNN to obtain the predicted value of the net load. The performance of this model is verified using real data. The accuracy is high in forecasting the net load under high PV penetration rate and different weather conditions.</description><subject>Artificial intelligence</subject><subject>Debugging</subject><subject>Decomposition</subject><subject>deep neural network</subject><subject>Distributed generation</subject><subject>Electric power distribution</subject><subject>Electric power generation</subject><subject>Electrical engineering</subject><subject>Electricity consumption</subject><subject>Electricity distribution</subject><subject>Energy sources</subject><subject>Forecasting</subject><subject>Machine learning</subject><subject>net load forecasting</subject><subject>Neural networks</subject><subject>Optimization algorithms</subject><subject>phase space reconstruction</subject><subject>Power plants</subject><subject>Power supplies</subject><subject>Power supply</subject><subject>Reconstruction</subject><subject>Short term</subject><subject>Time series</subject><subject>Volatility</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkclKBDEQhhtRUNSLTxDwJrRmM8vRbVQYF3TmHNJJtfbYdtokg_j2RkfUulRR9fNVUX9V7RF8yJjGR3YcNZaEK7lWbVEsRc04kev_6s1qN6UFLqEJUwRvVd3JgOZ9jjY9h5jrGcRXdAsZTYP1aBIiOJtyNzyhm-ChR6c2gUdhQPfPpUKPo3WAHsCFIeW4dLkrIzt4dA4wFs4y2v4L9x7iy0610do-we5P3q7mk4vZ2VU9vbu8PjuZ1o4JkmuLmwZTrqWl3inFQDdEgORSYaYbQRvFqWqpBhCaggMhJLWUwjGTrVdFtF1dr7g-2IUZY_dq44cJtjPfjRCfjI25cz2Ygj0G6YgXzPOCaVj5ngdBuWqAQVtY-yvWGMPbElI2i7CMQznfUEY4J0xKXVQHK5WLIaUI7e9Wgs2XM-bPGfYJ3EV_aw</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Mei, Fei</creator><creator>Wu, Qingliang</creator><creator>Shi, Tian</creator><creator>Lu, Jixiang</creator><creator>Pan, Yi</creator><creator>Zheng, Jianyong</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5379-6522</orcidid></search><sort><creationdate>20190401</creationdate><title>An Ultrashort-Term Net Load Forecasting Model Based on Phase Space Reconstruction and Deep Neural Network</title><author>Mei, Fei ; Wu, Qingliang ; Shi, Tian ; Lu, Jixiang ; Pan, Yi ; Zheng, Jianyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-a0bb02497a2dc883e9b16e7478039b62b8428f29ee692ece6672a22e537fd8803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial intelligence</topic><topic>Debugging</topic><topic>Decomposition</topic><topic>deep neural network</topic><topic>Distributed generation</topic><topic>Electric power distribution</topic><topic>Electric power generation</topic><topic>Electrical engineering</topic><topic>Electricity consumption</topic><topic>Electricity distribution</topic><topic>Energy sources</topic><topic>Forecasting</topic><topic>Machine learning</topic><topic>net load forecasting</topic><topic>Neural networks</topic><topic>Optimization algorithms</topic><topic>phase space reconstruction</topic><topic>Power plants</topic><topic>Power supplies</topic><topic>Power supply</topic><topic>Reconstruction</topic><topic>Short term</topic><topic>Time series</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mei, Fei</creatorcontrib><creatorcontrib>Wu, Qingliang</creatorcontrib><creatorcontrib>Shi, Tian</creatorcontrib><creatorcontrib>Lu, Jixiang</creatorcontrib><creatorcontrib>Pan, Yi</creatorcontrib><creatorcontrib>Zheng, Jianyong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mei, Fei</au><au>Wu, Qingliang</au><au>Shi, Tian</au><au>Lu, Jixiang</au><au>Pan, Yi</au><au>Zheng, Jianyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Ultrashort-Term Net Load Forecasting Model Based on Phase Space Reconstruction and Deep Neural Network</atitle><jtitle>Applied sciences</jtitle><date>2019-04-01</date><risdate>2019</risdate><volume>9</volume><issue>7</issue><spage>1487</spage><pages>1487-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>Recently, a large number of distributed photovoltaic (PV) power generations have been connected to the power grid, which resulted in an increased fluctuation of the net load. Therefore, load forecasting has become more difficult. Considering the characteristics of the net load, an ultrashort-term forecasting model based on phase space reconstruction and deep neural network (DNN) is proposed, which can be divided into two steps. First, the phase space reconstruction of the net load time series data is performed using the C-C method. Second, the reconstructed data is fitted by the DNN to obtain the predicted value of the net load. The performance of this model is verified using real data. The accuracy is high in forecasting the net load under high PV penetration rate and different weather conditions.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app9071487</doi><orcidid>https://orcid.org/0000-0001-5379-6522</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2076-3417 |
ispartof | Applied sciences, 2019-04, Vol.9 (7), p.1487 |
issn | 2076-3417 2076-3417 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_e745e7c1d63d472ab3714de6248be3ef |
source | Publicly Available Content Database |
subjects | Artificial intelligence Debugging Decomposition deep neural network Distributed generation Electric power distribution Electric power generation Electrical engineering Electricity consumption Electricity distribution Energy sources Forecasting Machine learning net load forecasting Neural networks Optimization algorithms phase space reconstruction Power plants Power supplies Power supply Reconstruction Short term Time series Volatility |
title | An Ultrashort-Term Net Load Forecasting Model Based on Phase Space Reconstruction and Deep Neural Network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A30%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Ultrashort-Term%20Net%20Load%20Forecasting%20Model%20Based%20on%20Phase%20Space%20Reconstruction%20and%20Deep%20Neural%20Network&rft.jtitle=Applied%20sciences&rft.au=Mei,%20Fei&rft.date=2019-04-01&rft.volume=9&rft.issue=7&rft.spage=1487&rft.pages=1487-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app9071487&rft_dat=%3Cproquest_doaj_%3E2314413779%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-a0bb02497a2dc883e9b16e7478039b62b8428f29ee692ece6672a22e537fd8803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2314413779&rft_id=info:pmid/&rfr_iscdi=true |