Loading…

An Ultrashort-Term Net Load Forecasting Model Based on Phase Space Reconstruction and Deep Neural Network

Recently, a large number of distributed photovoltaic (PV) power generations have been connected to the power grid, which resulted in an increased fluctuation of the net load. Therefore, load forecasting has become more difficult. Considering the characteristics of the net load, an ultrashort-term fo...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2019-04, Vol.9 (7), p.1487
Main Authors: Mei, Fei, Wu, Qingliang, Shi, Tian, Lu, Jixiang, Pan, Yi, Zheng, Jianyong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c361t-a0bb02497a2dc883e9b16e7478039b62b8428f29ee692ece6672a22e537fd8803
cites cdi_FETCH-LOGICAL-c361t-a0bb02497a2dc883e9b16e7478039b62b8428f29ee692ece6672a22e537fd8803
container_end_page
container_issue 7
container_start_page 1487
container_title Applied sciences
container_volume 9
creator Mei, Fei
Wu, Qingliang
Shi, Tian
Lu, Jixiang
Pan, Yi
Zheng, Jianyong
description Recently, a large number of distributed photovoltaic (PV) power generations have been connected to the power grid, which resulted in an increased fluctuation of the net load. Therefore, load forecasting has become more difficult. Considering the characteristics of the net load, an ultrashort-term forecasting model based on phase space reconstruction and deep neural network (DNN) is proposed, which can be divided into two steps. First, the phase space reconstruction of the net load time series data is performed using the C-C method. Second, the reconstructed data is fitted by the DNN to obtain the predicted value of the net load. The performance of this model is verified using real data. The accuracy is high in forecasting the net load under high PV penetration rate and different weather conditions.
doi_str_mv 10.3390/app9071487
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e745e7c1d63d472ab3714de6248be3ef</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e745e7c1d63d472ab3714de6248be3ef</doaj_id><sourcerecordid>2314413779</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-a0bb02497a2dc883e9b16e7478039b62b8428f29ee692ece6672a22e537fd8803</originalsourceid><addsrcrecordid>eNpNkclKBDEQhhtRUNSLTxDwJrRmM8vRbVQYF3TmHNJJtfbYdtokg_j2RkfUulRR9fNVUX9V7RF8yJjGR3YcNZaEK7lWbVEsRc04kev_6s1qN6UFLqEJUwRvVd3JgOZ9jjY9h5jrGcRXdAsZTYP1aBIiOJtyNzyhm-ChR6c2gUdhQPfPpUKPo3WAHsCFIeW4dLkrIzt4dA4wFs4y2v4L9x7iy0610do-we5P3q7mk4vZ2VU9vbu8PjuZ1o4JkmuLmwZTrqWl3inFQDdEgORSYaYbQRvFqWqpBhCaggMhJLWUwjGTrVdFtF1dr7g-2IUZY_dq44cJtjPfjRCfjI25cz2Ygj0G6YgXzPOCaVj5ngdBuWqAQVtY-yvWGMPbElI2i7CMQznfUEY4J0xKXVQHK5WLIaUI7e9Wgs2XM-bPGfYJ3EV_aw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2314413779</pqid></control><display><type>article</type><title>An Ultrashort-Term Net Load Forecasting Model Based on Phase Space Reconstruction and Deep Neural Network</title><source>Publicly Available Content Database</source><creator>Mei, Fei ; Wu, Qingliang ; Shi, Tian ; Lu, Jixiang ; Pan, Yi ; Zheng, Jianyong</creator><creatorcontrib>Mei, Fei ; Wu, Qingliang ; Shi, Tian ; Lu, Jixiang ; Pan, Yi ; Zheng, Jianyong</creatorcontrib><description>Recently, a large number of distributed photovoltaic (PV) power generations have been connected to the power grid, which resulted in an increased fluctuation of the net load. Therefore, load forecasting has become more difficult. Considering the characteristics of the net load, an ultrashort-term forecasting model based on phase space reconstruction and deep neural network (DNN) is proposed, which can be divided into two steps. First, the phase space reconstruction of the net load time series data is performed using the C-C method. Second, the reconstructed data is fitted by the DNN to obtain the predicted value of the net load. The performance of this model is verified using real data. The accuracy is high in forecasting the net load under high PV penetration rate and different weather conditions.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app9071487</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Artificial intelligence ; Debugging ; Decomposition ; deep neural network ; Distributed generation ; Electric power distribution ; Electric power generation ; Electrical engineering ; Electricity consumption ; Electricity distribution ; Energy sources ; Forecasting ; Machine learning ; net load forecasting ; Neural networks ; Optimization algorithms ; phase space reconstruction ; Power plants ; Power supplies ; Power supply ; Reconstruction ; Short term ; Time series ; Volatility</subject><ispartof>Applied sciences, 2019-04, Vol.9 (7), p.1487</ispartof><rights>2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-a0bb02497a2dc883e9b16e7478039b62b8428f29ee692ece6672a22e537fd8803</citedby><cites>FETCH-LOGICAL-c361t-a0bb02497a2dc883e9b16e7478039b62b8428f29ee692ece6672a22e537fd8803</cites><orcidid>0000-0001-5379-6522</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2314413779/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2314413779?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Mei, Fei</creatorcontrib><creatorcontrib>Wu, Qingliang</creatorcontrib><creatorcontrib>Shi, Tian</creatorcontrib><creatorcontrib>Lu, Jixiang</creatorcontrib><creatorcontrib>Pan, Yi</creatorcontrib><creatorcontrib>Zheng, Jianyong</creatorcontrib><title>An Ultrashort-Term Net Load Forecasting Model Based on Phase Space Reconstruction and Deep Neural Network</title><title>Applied sciences</title><description>Recently, a large number of distributed photovoltaic (PV) power generations have been connected to the power grid, which resulted in an increased fluctuation of the net load. Therefore, load forecasting has become more difficult. Considering the characteristics of the net load, an ultrashort-term forecasting model based on phase space reconstruction and deep neural network (DNN) is proposed, which can be divided into two steps. First, the phase space reconstruction of the net load time series data is performed using the C-C method. Second, the reconstructed data is fitted by the DNN to obtain the predicted value of the net load. The performance of this model is verified using real data. The accuracy is high in forecasting the net load under high PV penetration rate and different weather conditions.</description><subject>Artificial intelligence</subject><subject>Debugging</subject><subject>Decomposition</subject><subject>deep neural network</subject><subject>Distributed generation</subject><subject>Electric power distribution</subject><subject>Electric power generation</subject><subject>Electrical engineering</subject><subject>Electricity consumption</subject><subject>Electricity distribution</subject><subject>Energy sources</subject><subject>Forecasting</subject><subject>Machine learning</subject><subject>net load forecasting</subject><subject>Neural networks</subject><subject>Optimization algorithms</subject><subject>phase space reconstruction</subject><subject>Power plants</subject><subject>Power supplies</subject><subject>Power supply</subject><subject>Reconstruction</subject><subject>Short term</subject><subject>Time series</subject><subject>Volatility</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkclKBDEQhhtRUNSLTxDwJrRmM8vRbVQYF3TmHNJJtfbYdtokg_j2RkfUulRR9fNVUX9V7RF8yJjGR3YcNZaEK7lWbVEsRc04kev_6s1qN6UFLqEJUwRvVd3JgOZ9jjY9h5jrGcRXdAsZTYP1aBIiOJtyNzyhm-ChR6c2gUdhQPfPpUKPo3WAHsCFIeW4dLkrIzt4dA4wFs4y2v4L9x7iy0610do-we5P3q7mk4vZ2VU9vbu8PjuZ1o4JkmuLmwZTrqWl3inFQDdEgORSYaYbQRvFqWqpBhCaggMhJLWUwjGTrVdFtF1dr7g-2IUZY_dq44cJtjPfjRCfjI25cz2Ygj0G6YgXzPOCaVj5ngdBuWqAQVtY-yvWGMPbElI2i7CMQznfUEY4J0xKXVQHK5WLIaUI7e9Wgs2XM-bPGfYJ3EV_aw</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Mei, Fei</creator><creator>Wu, Qingliang</creator><creator>Shi, Tian</creator><creator>Lu, Jixiang</creator><creator>Pan, Yi</creator><creator>Zheng, Jianyong</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5379-6522</orcidid></search><sort><creationdate>20190401</creationdate><title>An Ultrashort-Term Net Load Forecasting Model Based on Phase Space Reconstruction and Deep Neural Network</title><author>Mei, Fei ; Wu, Qingliang ; Shi, Tian ; Lu, Jixiang ; Pan, Yi ; Zheng, Jianyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-a0bb02497a2dc883e9b16e7478039b62b8428f29ee692ece6672a22e537fd8803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial intelligence</topic><topic>Debugging</topic><topic>Decomposition</topic><topic>deep neural network</topic><topic>Distributed generation</topic><topic>Electric power distribution</topic><topic>Electric power generation</topic><topic>Electrical engineering</topic><topic>Electricity consumption</topic><topic>Electricity distribution</topic><topic>Energy sources</topic><topic>Forecasting</topic><topic>Machine learning</topic><topic>net load forecasting</topic><topic>Neural networks</topic><topic>Optimization algorithms</topic><topic>phase space reconstruction</topic><topic>Power plants</topic><topic>Power supplies</topic><topic>Power supply</topic><topic>Reconstruction</topic><topic>Short term</topic><topic>Time series</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mei, Fei</creatorcontrib><creatorcontrib>Wu, Qingliang</creatorcontrib><creatorcontrib>Shi, Tian</creatorcontrib><creatorcontrib>Lu, Jixiang</creatorcontrib><creatorcontrib>Pan, Yi</creatorcontrib><creatorcontrib>Zheng, Jianyong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mei, Fei</au><au>Wu, Qingliang</au><au>Shi, Tian</au><au>Lu, Jixiang</au><au>Pan, Yi</au><au>Zheng, Jianyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Ultrashort-Term Net Load Forecasting Model Based on Phase Space Reconstruction and Deep Neural Network</atitle><jtitle>Applied sciences</jtitle><date>2019-04-01</date><risdate>2019</risdate><volume>9</volume><issue>7</issue><spage>1487</spage><pages>1487-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>Recently, a large number of distributed photovoltaic (PV) power generations have been connected to the power grid, which resulted in an increased fluctuation of the net load. Therefore, load forecasting has become more difficult. Considering the characteristics of the net load, an ultrashort-term forecasting model based on phase space reconstruction and deep neural network (DNN) is proposed, which can be divided into two steps. First, the phase space reconstruction of the net load time series data is performed using the C-C method. Second, the reconstructed data is fitted by the DNN to obtain the predicted value of the net load. The performance of this model is verified using real data. The accuracy is high in forecasting the net load under high PV penetration rate and different weather conditions.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app9071487</doi><orcidid>https://orcid.org/0000-0001-5379-6522</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3417
ispartof Applied sciences, 2019-04, Vol.9 (7), p.1487
issn 2076-3417
2076-3417
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_e745e7c1d63d472ab3714de6248be3ef
source Publicly Available Content Database
subjects Artificial intelligence
Debugging
Decomposition
deep neural network
Distributed generation
Electric power distribution
Electric power generation
Electrical engineering
Electricity consumption
Electricity distribution
Energy sources
Forecasting
Machine learning
net load forecasting
Neural networks
Optimization algorithms
phase space reconstruction
Power plants
Power supplies
Power supply
Reconstruction
Short term
Time series
Volatility
title An Ultrashort-Term Net Load Forecasting Model Based on Phase Space Reconstruction and Deep Neural Network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A30%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Ultrashort-Term%20Net%20Load%20Forecasting%20Model%20Based%20on%20Phase%20Space%20Reconstruction%20and%20Deep%20Neural%20Network&rft.jtitle=Applied%20sciences&rft.au=Mei,%20Fei&rft.date=2019-04-01&rft.volume=9&rft.issue=7&rft.spage=1487&rft.pages=1487-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app9071487&rft_dat=%3Cproquest_doaj_%3E2314413779%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-a0bb02497a2dc883e9b16e7478039b62b8428f29ee692ece6672a22e537fd8803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2314413779&rft_id=info:pmid/&rfr_iscdi=true