Loading…
Rac1 Pharmacological Inhibition Rescues Human Endothelial Dysfunction
Background Endothelial dysfunction contributes significantly to the development of vascular diseases. However, a therapy able to reduce this derangement still needs to be identified. We evaluated the effects of pharmacological inhibition of Rac1, a small GTPase protein promoting oxidative stress, in...
Saved in:
Published in: | Journal of the American Heart Association 2017-03, Vol.6 (3), p.n/a |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Background
Endothelial dysfunction contributes significantly to the development of vascular diseases. However, a therapy able to reduce this derangement still needs to be identified. We evaluated the effects of pharmacological inhibition of Rac1, a small GTPase protein promoting oxidative stress, in human endothelial dysfunction.
Methods and Results
We performed vascular reactivity studies to test the effects of NSC23766, a Rac1 inhibitor, on endothelium‐dependent vasorelaxation of saphenous vein segments collected from 85 subjects who had undergone surgery for venous insufficiency and from 11 patients who had undergone peripheral vascular surgery. The endothelium‐dependent vasorelaxation of the varicose segments of saphenous veins collected from patients with venous insufficiency was markedly impaired and was also significantly lower than that observed in control nonvaricose vein tracts from the same veins. Rac1 activity, reactive oxygen species levels, and reduced nicotine adenine dinucleotide phosphate (NADPH) oxidase activity were significantly increased in varicose veins, and NSC23766 was able to significantly improve endothelium‐dependent vasorelaxation of dysfunctional saphenous vein portions in a nitric oxide–dependent manner. These effects were paralleled by a significant reduction of NADPH oxidase activity and activation of endothelial nitric oxide synthase. Finally, we further corroborated this data by demonstrating that Rac1 inhibition significantly improves venous endothelial function and reduces NADPH oxidase activity in saphenous vein grafts harvested from patients with vascular diseases undergoing peripheral bypass surgery.
Conclusions
Rac1 pharmacological inhibition rescues endothelial function and reduces oxidative stress in dysfunctional veins. Rac1 inhibition may represent a potential therapeutic intervention to reduce human endothelial dysfunction and subsequently vascular diseases in various clinical settings. |
---|---|
ISSN: | 2047-9980 2047-9980 |
DOI: | 10.1161/JAHA.116.004746 |