Loading…
Hybrid analysis pipelines in the REANA reproducible analysis platform
We introduce the feasibility of running hybrid analysis pipelines in the REANA reproducible analysis platform. The REANA platform allows researchers to specify declarative computational workflow steps describing the analysis process and to execute analysis workload on remote containerised compute cl...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c360t-3ad23e9fd0121e47393b0145edad583842ef22f48ee07bc3d2c5cd9ce519b2d73 |
---|---|
cites | cdi_FETCH-LOGICAL-c360t-3ad23e9fd0121e47393b0145edad583842ef22f48ee07bc3d2c5cd9ce519b2d73 |
container_end_page | |
container_issue | |
container_start_page | 6041 |
container_title | |
container_volume | 245 |
creator | Rodríguez, Diego Mačiulaitis, Rokas Okraska, Jan Šimko, Tibor |
description | We introduce the feasibility of running hybrid analysis pipelines in the REANA reproducible analysis platform. The REANA platform allows researchers to specify declarative computational workflow steps describing the analysis process and to execute analysis workload on remote containerised compute clouds. We have designed an abstract job controller component permitting to execute different parts of the analysis workflow on different compute backends, such as HTCondor, Kubernetes and SLURM. We have prototyped the designed solution including the job execution, job monitoring, and input/output file staging mechanism between the various compute backends. We have tested the prototype using several particle physics model analyses. The present work introduces support for hybrid analysis workflows in the REANA reproducible analysis platform and paves the way towards studying underlying performance advantages and challenges associated with hybrid analysis patterns in complex particle physics data analyses. |
doi_str_mv | 10.1051/epjconf/202024506041 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e7ade15ec8d54813b37ccb99ffe2f34f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e7ade15ec8d54813b37ccb99ffe2f34f</doaj_id><sourcerecordid>2465749298</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-3ad23e9fd0121e47393b0145edad583842ef22f48ee07bc3d2c5cd9ce519b2d73</originalsourceid><addsrcrecordid>eNpNUE1LAzEQDaJgqf0HHhY8r83n7uZYSrWFoiAK3kI2mWiW7WZNtof-e7e2SGcOMwyP9-Y9hO4JfiRYkDn0jQmdm1M8Nhe4wJxcoQklGOeY8M_ri_0WzVJq8FhMSiaKCVqtD3X0NtOdbg_Jp6z3PbS-g5T5Lhu-IXtbLV4WWYQ-Brs3vm7hAtzqwYW4u0M3TrcJZuc5RR9Pq_flOt--Pm-Wi21uWIGHnGlLGUhnMaEEeMkkq8e3BFhtRcUqTsFR6ngFgMvaMEuNMFYaEETW1JZsijYnXht0o_rodzoeVNBe_R1C_FI6Dt60oKDUFogAU1nBK8JqVhpTS-kcUMe4G7keTlyjsZ89pEE1YR9HZ0lRXoiSSyqrEcVPKBNDShHcvyrB6pi_OuevLvNnv2Ileng</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2465749298</pqid></control><display><type>conference_proceeding</type><title>Hybrid analysis pipelines in the REANA reproducible analysis platform</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Free Full-Text Journals in Chemistry</source><creator>Rodríguez, Diego ; Mačiulaitis, Rokas ; Okraska, Jan ; Šimko, Tibor</creator><contributor>Kamleh, W. ; Stewart, G.A. ; Kim, D. ; Doglioni, C. ; Silvestris, L. ; Jackson, P.</contributor><creatorcontrib>Rodríguez, Diego ; Mačiulaitis, Rokas ; Okraska, Jan ; Šimko, Tibor ; Kamleh, W. ; Stewart, G.A. ; Kim, D. ; Doglioni, C. ; Silvestris, L. ; Jackson, P.</creatorcontrib><description>We introduce the feasibility of running hybrid analysis pipelines in the REANA reproducible analysis platform. The REANA platform allows researchers to specify declarative computational workflow steps describing the analysis process and to execute analysis workload on remote containerised compute clouds. We have designed an abstract job controller component permitting to execute different parts of the analysis workflow on different compute backends, such as HTCondor, Kubernetes and SLURM. We have prototyped the designed solution including the job execution, job monitoring, and input/output file staging mechanism between the various compute backends. We have tested the prototype using several particle physics model analyses. The present work introduces support for hybrid analysis workflows in the REANA reproducible analysis platform and paves the way towards studying underlying performance advantages and challenges associated with hybrid analysis patterns in complex particle physics data analyses.</description><identifier>ISSN: 2100-014X</identifier><identifier>ISSN: 2101-6275</identifier><identifier>EISSN: 2100-014X</identifier><identifier>DOI: 10.1051/epjconf/202024506041</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>Cloud computing ; Control systems design ; Particle physics ; Pipelines ; Workflow</subject><ispartof>EPJ Web of Conferences, 2020, Vol.245, p.6041</ispartof><rights>2020. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-3ad23e9fd0121e47393b0145edad583842ef22f48ee07bc3d2c5cd9ce519b2d73</citedby><cites>FETCH-LOGICAL-c360t-3ad23e9fd0121e47393b0145edad583842ef22f48ee07bc3d2c5cd9ce519b2d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2465749298?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>309,310,314,780,784,789,790,4024,23930,23931,25140,25753,27923,27924,27925,37012,44590</link.rule.ids></links><search><contributor>Kamleh, W.</contributor><contributor>Stewart, G.A.</contributor><contributor>Kim, D.</contributor><contributor>Doglioni, C.</contributor><contributor>Silvestris, L.</contributor><contributor>Jackson, P.</contributor><creatorcontrib>Rodríguez, Diego</creatorcontrib><creatorcontrib>Mačiulaitis, Rokas</creatorcontrib><creatorcontrib>Okraska, Jan</creatorcontrib><creatorcontrib>Šimko, Tibor</creatorcontrib><title>Hybrid analysis pipelines in the REANA reproducible analysis platform</title><title>EPJ Web of Conferences</title><description>We introduce the feasibility of running hybrid analysis pipelines in the REANA reproducible analysis platform. The REANA platform allows researchers to specify declarative computational workflow steps describing the analysis process and to execute analysis workload on remote containerised compute clouds. We have designed an abstract job controller component permitting to execute different parts of the analysis workflow on different compute backends, such as HTCondor, Kubernetes and SLURM. We have prototyped the designed solution including the job execution, job monitoring, and input/output file staging mechanism between the various compute backends. We have tested the prototype using several particle physics model analyses. The present work introduces support for hybrid analysis workflows in the REANA reproducible analysis platform and paves the way towards studying underlying performance advantages and challenges associated with hybrid analysis patterns in complex particle physics data analyses.</description><subject>Cloud computing</subject><subject>Control systems design</subject><subject>Particle physics</subject><subject>Pipelines</subject><subject>Workflow</subject><issn>2100-014X</issn><issn>2101-6275</issn><issn>2100-014X</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1LAzEQDaJgqf0HHhY8r83n7uZYSrWFoiAK3kI2mWiW7WZNtof-e7e2SGcOMwyP9-Y9hO4JfiRYkDn0jQmdm1M8Nhe4wJxcoQklGOeY8M_ri_0WzVJq8FhMSiaKCVqtD3X0NtOdbg_Jp6z3PbS-g5T5Lhu-IXtbLV4WWYQ-Brs3vm7hAtzqwYW4u0M3TrcJZuc5RR9Pq_flOt--Pm-Wi21uWIGHnGlLGUhnMaEEeMkkq8e3BFhtRcUqTsFR6ngFgMvaMEuNMFYaEETW1JZsijYnXht0o_rodzoeVNBe_R1C_FI6Dt60oKDUFogAU1nBK8JqVhpTS-kcUMe4G7keTlyjsZ89pEE1YR9HZ0lRXoiSSyqrEcVPKBNDShHcvyrB6pi_OuevLvNnv2Ileng</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Rodríguez, Diego</creator><creator>Mačiulaitis, Rokas</creator><creator>Okraska, Jan</creator><creator>Šimko, Tibor</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>2020</creationdate><title>Hybrid analysis pipelines in the REANA reproducible analysis platform</title><author>Rodríguez, Diego ; Mačiulaitis, Rokas ; Okraska, Jan ; Šimko, Tibor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-3ad23e9fd0121e47393b0145edad583842ef22f48ee07bc3d2c5cd9ce519b2d73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cloud computing</topic><topic>Control systems design</topic><topic>Particle physics</topic><topic>Pipelines</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodríguez, Diego</creatorcontrib><creatorcontrib>Mačiulaitis, Rokas</creatorcontrib><creatorcontrib>Okraska, Jan</creatorcontrib><creatorcontrib>Šimko, Tibor</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodríguez, Diego</au><au>Mačiulaitis, Rokas</au><au>Okraska, Jan</au><au>Šimko, Tibor</au><au>Kamleh, W.</au><au>Stewart, G.A.</au><au>Kim, D.</au><au>Doglioni, C.</au><au>Silvestris, L.</au><au>Jackson, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Hybrid analysis pipelines in the REANA reproducible analysis platform</atitle><btitle>EPJ Web of Conferences</btitle><date>2020</date><risdate>2020</risdate><volume>245</volume><spage>6041</spage><pages>6041-</pages><issn>2100-014X</issn><issn>2101-6275</issn><eissn>2100-014X</eissn><abstract>We introduce the feasibility of running hybrid analysis pipelines in the REANA reproducible analysis platform. The REANA platform allows researchers to specify declarative computational workflow steps describing the analysis process and to execute analysis workload on remote containerised compute clouds. We have designed an abstract job controller component permitting to execute different parts of the analysis workflow on different compute backends, such as HTCondor, Kubernetes and SLURM. We have prototyped the designed solution including the job execution, job monitoring, and input/output file staging mechanism between the various compute backends. We have tested the prototype using several particle physics model analyses. The present work introduces support for hybrid analysis workflows in the REANA reproducible analysis platform and paves the way towards studying underlying performance advantages and challenges associated with hybrid analysis patterns in complex particle physics data analyses.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/epjconf/202024506041</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2100-014X |
ispartof | EPJ Web of Conferences, 2020, Vol.245, p.6041 |
issn | 2100-014X 2101-6275 2100-014X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_e7ade15ec8d54813b37ccb99ffe2f34f |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); Free Full-Text Journals in Chemistry |
subjects | Cloud computing Control systems design Particle physics Pipelines Workflow |
title | Hybrid analysis pipelines in the REANA reproducible analysis platform |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A54%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Hybrid%20analysis%20pipelines%20in%20the%20REANA%20reproducible%20analysis%20platform&rft.btitle=EPJ%20Web%20of%20Conferences&rft.au=Rodr%C3%ADguez,%20Diego&rft.date=2020&rft.volume=245&rft.spage=6041&rft.pages=6041-&rft.issn=2100-014X&rft.eissn=2100-014X&rft_id=info:doi/10.1051/epjconf/202024506041&rft_dat=%3Cproquest_doaj_%3E2465749298%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c360t-3ad23e9fd0121e47393b0145edad583842ef22f48ee07bc3d2c5cd9ce519b2d73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2465749298&rft_id=info:pmid/&rfr_iscdi=true |