Loading…
Integrating Software FMEA and STPA to Develop a Bayesian Network-Based Software Risk Model for Autonomous Ships
The autonomous shipping industry is increasingly focusing on enhancing the safety and reliability of software-based systems. Conducting a risk assessment is a requirement for demonstrating the safety equivalence of autonomous ships based on such systems to conventional vessels. Traditional risk asse...
Saved in:
Published in: | Journal of marine science and engineering 2024-01, Vol.12 (1), p.4 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c406t-8cebd6bba5f09ac587b323c78aab0b494748f0f660d863187ee54f3612ddab983 |
---|---|
cites | cdi_FETCH-LOGICAL-c406t-8cebd6bba5f09ac587b323c78aab0b494748f0f660d863187ee54f3612ddab983 |
container_end_page | |
container_issue | 1 |
container_start_page | 4 |
container_title | Journal of marine science and engineering |
container_volume | 12 |
creator | Yang, Xue Zhu, Yawei Zhou, Tao Xu, Sheng Zhang, Wenjun Zhou, Xiangyu Meng, Xiangkun |
description | The autonomous shipping industry is increasingly focusing on enhancing the safety and reliability of software-based systems. Conducting a risk assessment is a requirement for demonstrating the safety equivalence of autonomous ships based on such systems to conventional vessels. Traditional risk assessment models, however, primarily focus on hardware failures, often overlooking potential software-related failures and functional inadequacies. This study proposes a framework integrating Software Failure Mode and Effects Analysis (FMEA), System–Theoretic Process Analysis (STPA), and Bayesian Network (BN) for risk identification of autonomous ship software systems. The results of a case study reveal that the framework sufficiently addresses the multifaceted nature of risks related to software in autonomous ships. Based on the findings of this study, we suggest the need for standardization of software architecture development in the autonomous ship industry and highlight the necessity for an enhanced understanding of AI-specific risks and the development of tailored risk assessment methodologies. |
doi_str_mv | 10.3390/jmse12010004 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e7b9695951d649b68980cc87c11e7837</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A780877708</galeid><doaj_id>oai_doaj_org_article_e7b9695951d649b68980cc87c11e7837</doaj_id><sourcerecordid>A780877708</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-8cebd6bba5f09ac587b323c78aab0b494748f0f660d863187ee54f3612ddab983</originalsourceid><addsrcrecordid>eNpNUV1vEzEQPCGQqNq-8QMs8coV-3znj8draSFSC4iUZ2vPXgenyTnYDlX_fd0GQbUPuxrNzI52m-Ydo2eca_pxvc3IOsoopf2r5qijUraMs-71i_ltc5rzujKo6gSj4qiJi7ngKkEJ84osoy_3kJBc3VyOBGZHlrffR1Ii-YR_cBN3BMg5PGAOMJOvWO5jumvPIaP7L_0R8h25iQ43xMdExn2Jc9zGfSbLX2GXT5o3HjYZT__24-bn1eXtxZf2-tvnxcV43dqeitIqi5MT0wSDpxrsoOTEO26lApjo1Ote9spTLwR1SnCmJOLQey5Y5xxMWvHjZnHwdRHWZpfCFtKDiRDMMxDTykAqwW7QoJy00IMemBO9noTSilqrpGUMpeKyer0_eO1S_L3HXMw67tNc45tO191S1vtW1tmBtYJqGmYfSwJby-E22DijDxUfpaLPiqeIHw4Cm2LOCf2_mIyap5ealy_lj71NkjY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918777077</pqid></control><display><type>article</type><title>Integrating Software FMEA and STPA to Develop a Bayesian Network-Based Software Risk Model for Autonomous Ships</title><source>Publicly Available Content (ProQuest)</source><creator>Yang, Xue ; Zhu, Yawei ; Zhou, Tao ; Xu, Sheng ; Zhang, Wenjun ; Zhou, Xiangyu ; Meng, Xiangkun</creator><creatorcontrib>Yang, Xue ; Zhu, Yawei ; Zhou, Tao ; Xu, Sheng ; Zhang, Wenjun ; Zhou, Xiangyu ; Meng, Xiangkun</creatorcontrib><description>The autonomous shipping industry is increasingly focusing on enhancing the safety and reliability of software-based systems. Conducting a risk assessment is a requirement for demonstrating the safety equivalence of autonomous ships based on such systems to conventional vessels. Traditional risk assessment models, however, primarily focus on hardware failures, often overlooking potential software-related failures and functional inadequacies. This study proposes a framework integrating Software Failure Mode and Effects Analysis (FMEA), System–Theoretic Process Analysis (STPA), and Bayesian Network (BN) for risk identification of autonomous ship software systems. The results of a case study reveal that the framework sufficiently addresses the multifaceted nature of risks related to software in autonomous ships. Based on the findings of this study, we suggest the need for standardization of software architecture development in the autonomous ship industry and highlight the necessity for an enhanced understanding of AI-specific risks and the development of tailored risk assessment methodologies.</description><identifier>ISSN: 2077-1312</identifier><identifier>EISSN: 2077-1312</identifier><identifier>DOI: 10.3390/jmse12010004</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>autonomous ship ; Bayesian analysis ; Bayesian theory ; Case studies ; Container ships ; Failure ; Failure modes ; Failures ; Mathematical models ; Methods ; Navigation systems ; Probability theory ; Risk assessment ; Safety ; Shipping ; Shipping industry ; Ships ; Software ; Software FMEA ; Software reliability ; software risk assessment ; Standardization ; STPA ; System reliability</subject><ispartof>Journal of marine science and engineering, 2024-01, Vol.12 (1), p.4</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-8cebd6bba5f09ac587b323c78aab0b494748f0f660d863187ee54f3612ddab983</citedby><cites>FETCH-LOGICAL-c406t-8cebd6bba5f09ac587b323c78aab0b494748f0f660d863187ee54f3612ddab983</cites><orcidid>0000-0003-2156-5417 ; 0000-0002-0217-5344</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2918777077/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918777077?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Yang, Xue</creatorcontrib><creatorcontrib>Zhu, Yawei</creatorcontrib><creatorcontrib>Zhou, Tao</creatorcontrib><creatorcontrib>Xu, Sheng</creatorcontrib><creatorcontrib>Zhang, Wenjun</creatorcontrib><creatorcontrib>Zhou, Xiangyu</creatorcontrib><creatorcontrib>Meng, Xiangkun</creatorcontrib><title>Integrating Software FMEA and STPA to Develop a Bayesian Network-Based Software Risk Model for Autonomous Ships</title><title>Journal of marine science and engineering</title><description>The autonomous shipping industry is increasingly focusing on enhancing the safety and reliability of software-based systems. Conducting a risk assessment is a requirement for demonstrating the safety equivalence of autonomous ships based on such systems to conventional vessels. Traditional risk assessment models, however, primarily focus on hardware failures, often overlooking potential software-related failures and functional inadequacies. This study proposes a framework integrating Software Failure Mode and Effects Analysis (FMEA), System–Theoretic Process Analysis (STPA), and Bayesian Network (BN) for risk identification of autonomous ship software systems. The results of a case study reveal that the framework sufficiently addresses the multifaceted nature of risks related to software in autonomous ships. Based on the findings of this study, we suggest the need for standardization of software architecture development in the autonomous ship industry and highlight the necessity for an enhanced understanding of AI-specific risks and the development of tailored risk assessment methodologies.</description><subject>autonomous ship</subject><subject>Bayesian analysis</subject><subject>Bayesian theory</subject><subject>Case studies</subject><subject>Container ships</subject><subject>Failure</subject><subject>Failure modes</subject><subject>Failures</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Navigation systems</subject><subject>Probability theory</subject><subject>Risk assessment</subject><subject>Safety</subject><subject>Shipping</subject><subject>Shipping industry</subject><subject>Ships</subject><subject>Software</subject><subject>Software FMEA</subject><subject>Software reliability</subject><subject>software risk assessment</subject><subject>Standardization</subject><subject>STPA</subject><subject>System reliability</subject><issn>2077-1312</issn><issn>2077-1312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1vEzEQPCGQqNq-8QMs8coV-3znj8draSFSC4iUZ2vPXgenyTnYDlX_fd0GQbUPuxrNzI52m-Ydo2eca_pxvc3IOsoopf2r5qijUraMs-71i_ltc5rzujKo6gSj4qiJi7ngKkEJ84osoy_3kJBc3VyOBGZHlrffR1Ii-YR_cBN3BMg5PGAOMJOvWO5jumvPIaP7L_0R8h25iQ43xMdExn2Jc9zGfSbLX2GXT5o3HjYZT__24-bn1eXtxZf2-tvnxcV43dqeitIqi5MT0wSDpxrsoOTEO26lApjo1Ote9spTLwR1SnCmJOLQey5Y5xxMWvHjZnHwdRHWZpfCFtKDiRDMMxDTykAqwW7QoJy00IMemBO9noTSilqrpGUMpeKyer0_eO1S_L3HXMw67tNc45tO191S1vtW1tmBtYJqGmYfSwJby-E22DijDxUfpaLPiqeIHw4Cm2LOCf2_mIyap5ealy_lj71NkjY</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Yang, Xue</creator><creator>Zhu, Yawei</creator><creator>Zhou, Tao</creator><creator>Xu, Sheng</creator><creator>Zhang, Wenjun</creator><creator>Zhou, Xiangyu</creator><creator>Meng, Xiangkun</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TN</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>L6V</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>SOI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2156-5417</orcidid><orcidid>https://orcid.org/0000-0002-0217-5344</orcidid></search><sort><creationdate>20240101</creationdate><title>Integrating Software FMEA and STPA to Develop a Bayesian Network-Based Software Risk Model for Autonomous Ships</title><author>Yang, Xue ; Zhu, Yawei ; Zhou, Tao ; Xu, Sheng ; Zhang, Wenjun ; Zhou, Xiangyu ; Meng, Xiangkun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-8cebd6bba5f09ac587b323c78aab0b494748f0f660d863187ee54f3612ddab983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>autonomous ship</topic><topic>Bayesian analysis</topic><topic>Bayesian theory</topic><topic>Case studies</topic><topic>Container ships</topic><topic>Failure</topic><topic>Failure modes</topic><topic>Failures</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Navigation systems</topic><topic>Probability theory</topic><topic>Risk assessment</topic><topic>Safety</topic><topic>Shipping</topic><topic>Shipping industry</topic><topic>Ships</topic><topic>Software</topic><topic>Software FMEA</topic><topic>Software reliability</topic><topic>software risk assessment</topic><topic>Standardization</topic><topic>STPA</topic><topic>System reliability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Xue</creatorcontrib><creatorcontrib>Zhu, Yawei</creatorcontrib><creatorcontrib>Zhou, Tao</creatorcontrib><creatorcontrib>Xu, Sheng</creatorcontrib><creatorcontrib>Zhang, Wenjun</creatorcontrib><creatorcontrib>Zhou, Xiangyu</creatorcontrib><creatorcontrib>Meng, Xiangkun</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>Directory of Open Access Journals</collection><jtitle>Journal of marine science and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Xue</au><au>Zhu, Yawei</au><au>Zhou, Tao</au><au>Xu, Sheng</au><au>Zhang, Wenjun</au><au>Zhou, Xiangyu</au><au>Meng, Xiangkun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrating Software FMEA and STPA to Develop a Bayesian Network-Based Software Risk Model for Autonomous Ships</atitle><jtitle>Journal of marine science and engineering</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>12</volume><issue>1</issue><spage>4</spage><pages>4-</pages><issn>2077-1312</issn><eissn>2077-1312</eissn><abstract>The autonomous shipping industry is increasingly focusing on enhancing the safety and reliability of software-based systems. Conducting a risk assessment is a requirement for demonstrating the safety equivalence of autonomous ships based on such systems to conventional vessels. Traditional risk assessment models, however, primarily focus on hardware failures, often overlooking potential software-related failures and functional inadequacies. This study proposes a framework integrating Software Failure Mode and Effects Analysis (FMEA), System–Theoretic Process Analysis (STPA), and Bayesian Network (BN) for risk identification of autonomous ship software systems. The results of a case study reveal that the framework sufficiently addresses the multifaceted nature of risks related to software in autonomous ships. Based on the findings of this study, we suggest the need for standardization of software architecture development in the autonomous ship industry and highlight the necessity for an enhanced understanding of AI-specific risks and the development of tailored risk assessment methodologies.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/jmse12010004</doi><orcidid>https://orcid.org/0000-0003-2156-5417</orcidid><orcidid>https://orcid.org/0000-0002-0217-5344</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2077-1312 |
ispartof | Journal of marine science and engineering, 2024-01, Vol.12 (1), p.4 |
issn | 2077-1312 2077-1312 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_e7b9695951d649b68980cc87c11e7837 |
source | Publicly Available Content (ProQuest) |
subjects | autonomous ship Bayesian analysis Bayesian theory Case studies Container ships Failure Failure modes Failures Mathematical models Methods Navigation systems Probability theory Risk assessment Safety Shipping Shipping industry Ships Software Software FMEA Software reliability software risk assessment Standardization STPA System reliability |
title | Integrating Software FMEA and STPA to Develop a Bayesian Network-Based Software Risk Model for Autonomous Ships |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T02%3A43%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrating%20Software%20FMEA%20and%20STPA%20to%20Develop%20a%20Bayesian%20Network-Based%20Software%20Risk%20Model%20for%20Autonomous%20Ships&rft.jtitle=Journal%20of%20marine%20science%20and%20engineering&rft.au=Yang,%20Xue&rft.date=2024-01-01&rft.volume=12&rft.issue=1&rft.spage=4&rft.pages=4-&rft.issn=2077-1312&rft.eissn=2077-1312&rft_id=info:doi/10.3390/jmse12010004&rft_dat=%3Cgale_doaj_%3EA780877708%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c406t-8cebd6bba5f09ac587b323c78aab0b494748f0f660d863187ee54f3612ddab983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918777077&rft_id=info:pmid/&rft_galeid=A780877708&rfr_iscdi=true |