Loading…

Molecular-genetic approaches to species identification of platyhelminthes of the genus Ligophorus (Monogenea) parasitising flathead mullet

Mugil cephalus L., 1758 (flathead mullet) is a valuable commercial fish and a promising object of artificial breeding in the Black Sea and the Sea of Azov, and the study of its parasite fauna is important for fishery and mariculture. Monogeneans of the genus Ligophorus are common ectoparasites dwell...

Full description

Saved in:
Bibliographic Details
Published in:Vavilovskiĭ zhurnal genetiki i selekt͡s︡ii 2022-06, Vol.26 (3), p.290-297
Main Authors: Vodiasova, E. A., Chelebieva, E. S., Shikhat, O. V., Atopkin, D. M., Dmitrieva, E. V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mugil cephalus L., 1758 (flathead mullet) is a valuable commercial fish and a promising object of artificial breeding in the Black Sea and the Sea of Azov, and the study of its parasite fauna is important for fishery and mariculture. Monogeneans of the genus Ligophorus are common ectoparasites dwelling on the gills of mullets. Two representatives of this genus parasitise flathead mullet in the Azov-Black Sea region, namely Ligophorus mediterraneus Sarabeev, Balbuena et Euzet, 2005 and Ligophorus cephali Rubtsova, Balbuena, Sarabeev, Blasco-Costa et Euzet, 2006. Morphological identification of these species requires spending much time and a high level of experience in monogenean taxonomy. For quick and correct species identification of these parasites, we have developed a genotyping approach based on the polymerase chain reaction of allele-specific gene sites for various Monogenea species. A fragment of the 28S ribosomal gene, which includes conserved and variable sites, was chosen as a genetic marker. Three approaches were used as follows: amplified fragment length analysis, allelespecific PCR with endpoint detection and allele-specific real-time PCR using SYBR Green intercalating dye. The first approach was by obtaining PCR products of different lengths that were specific either to L. mediterraneus or to L. cephali . This approach was implemented due to the presence of several variable sites located at a distance from each other. The PCR mixture contained three primers: one forward and two reverse. The forward primer was complementary to the conserved site, which did not differ between species. Reverse primers were speciesspecific and, for each species, they were complementary to different DNA regions located 100 bp apart. As a result, L. mediterraneus was characterized by shorter amplicons than L. cephali . For the second and third approaches, a pair of primers was designed according to the following principle: the forward primer was complementary to both species, since it was selected for the conserved gene region. Reverse primers were species-specific and were designed for the 28S variable region. The two parasite species were distinguished by three-point mutations. Thus, one pair of primers was complementary to L. mediterraneus , the other, to L. cephali . The amplified fragment length analysis and the allele-specific real-time PCR demonstrated 100 % coincidence of genotyping results compared with Sanger sequencing. The developed genotyping protocols
ISSN:2500-0462
2500-3259
DOI:10.18699/VJGB-22-36