Loading…

A self-organized synthetic morphogenic liposome responds with shape changes to local light cues

Reconstituting artificial proto-cells capable of transducing extracellular signals into cytoskeletal changes can reveal fundamental principles of how non-equilibrium phenomena in cellular signal transduction affect morphogenesis. Here, we generated a Synthetic Morphogenic Membrane System (SynMMS) by...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2021-03, Vol.12 (1), p.1548-1548, Article 1548
Main Authors: Gavriljuk, Konstantin, Scocozza, Bruno, Ghasemalizadeh, Farid, Seidel, Hans, Nandan, Akhilesh P., Campos-Medina, Manuel, Schmick, Malte, Koseska, Aneta, Bastiaens, Philippe I. H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Reconstituting artificial proto-cells capable of transducing extracellular signals into cytoskeletal changes can reveal fundamental principles of how non-equilibrium phenomena in cellular signal transduction affect morphogenesis. Here, we generated a Synthetic Morphogenic Membrane System (SynMMS) by encapsulating a dynamic microtubule (MT) aster and a light-inducible signaling system driven by GTP/ATP chemical potential into cell-sized liposomes. Responding to light cues in analogy to morphogens, this biomimetic design embodies basic principles of localized Rho-GTPase signal transduction that generate an intracellular MT-regulator signaling gradient. Light-induced signaling promotes membrane-deforming growth of MT-filaments by dynamically elevating the membrane-proximal tubulin concentration. The resulting membrane deformations enable recursive coupling of the MT-aster with the signaling system, which generates global self-organized morphologies that reorganize towards local external cues in dependence on prior shape. SynMMS thereby signifies a step towards bio-inspired engineering of self-organized cellular morphogenesis. The authors generated a Synthetic Morphogenic Membrane System by encapsulating a dynamic microtubule aster and a light-inducible signaling system driven by GTP/ATP chemical potential into cell-sized liposomes. This reconstitution of artificial proto-cells reveals how non-equilibrium phenomena affect cellular information processing in morphogenesis.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-21679-2