Loading…

Review of machine learning‐driven design of polymer‐based dielectrics

Polymer‐based dielectrics are extensively applied in various electrical and electronic devices such as capacitors, power transmission cables and microchips, in which a variety of distinct performances such as the dielectric and thermal properties are desired. To fulfil these properties, the emerging...

Full description

Saved in:
Bibliographic Details
Published in:IET Nanodielectrics 2022-03, Vol.5 (1), p.24-38
Main Authors: Zhu, Ming‐Xiao, Deng, Ting, Dong, Lei, Chen, Ji‐Ming, Dang, Zhi‐Min
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3679-dddce0c0566078be7dc0ecd9d8be9e618152f6e34d55d7b9ac9bd6d024b06bc13
cites cdi_FETCH-LOGICAL-c3679-dddce0c0566078be7dc0ecd9d8be9e618152f6e34d55d7b9ac9bd6d024b06bc13
container_end_page 38
container_issue 1
container_start_page 24
container_title IET Nanodielectrics
container_volume 5
creator Zhu, Ming‐Xiao
Deng, Ting
Dong, Lei
Chen, Ji‐Ming
Dang, Zhi‐Min
description Polymer‐based dielectrics are extensively applied in various electrical and electronic devices such as capacitors, power transmission cables and microchips, in which a variety of distinct performances such as the dielectric and thermal properties are desired. To fulfil these properties, the emerging machine learning (ML) technique has been used to establish a surrogate model for the structure–property linkage analysis, which provides an effective tool for the rational design of the chemical and morphological structure of polymers/nanocomposites. In this article, the authors reviewed the recent progress in the ML algorithms and their applications in the rational design of polymer‐based dielectrics. The main routes for collecting training data including online libraries, experiments and high‐throughput computations are first summarized. The fingerprints charactering the microstructures of polymers/nanocomposites are presented, followed by the illustration of ML models to establish a mapping between the fingerprinted input and the target properties. Further, inverse design methods such as evolution searching strategies and generative models are described, which are exploited to accelerate the discovery of new polymer‐based dielectrics. Moreover, structure–property linkage analysis techniques such as Pearson correlation calculation, decision‐tree‐based methods and interpretable neural networks are summarized to identify the key features affecting the target properties. The future development prospects of the ML‐driven design method for polymer‐based dielectrics are also presented in this review.
doi_str_mv 10.1049/nde2.12029
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e7d6de1f79ac4f319be780b1bcb5e322</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e7d6de1f79ac4f319be780b1bcb5e322</doaj_id><sourcerecordid>3092322942</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3679-dddce0c0566078be7dc0ecd9d8be9e618152f6e34d55d7b9ac9bd6d024b06bc13</originalsourceid><addsrcrecordid>eNp9kM1KAzEQxxdRsGgvPsGCN6F1kv1qjlKrFoqC6Dkkmdmast2tST_ozUfwGX0Ss10RT54yZH7zm-EfRRcMhgxScV0j8SHjwMVR1OMZSwcJz7LjP_Vp1Pd-AQAcBCRs1Iumz7S1tIubMl4q82ZriitSrrb1_OvjE53dUh0jeTuvW2bVVPsludDSyhPGaKkis3bW-PPopFSVp_7Pexa93k1exg-D2dP9dHwzG5gkL8QAEQ2BgSzPoRhpKtAAGRQYakE5G7GMlzklKWYZFlooIzTmCDzVkGvDkrNo2nmxUQu5cnap3F42ysrDR-PmUrm1NRXJIM-RWFkES1omTIR1I9BMG51RwnlwXXaulWveN-TXctFsXB3OlwkIHhCRttRVRxnXeO-o_N3KQLbJyzZ5eUg-wKyDd7ai_T-kfLyd8G7mGykFh50</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092322942</pqid></control><display><type>article</type><title>Review of machine learning‐driven design of polymer‐based dielectrics</title><source>IET Digital Library - eJournals</source><source>Wiley-Blackwell Open Access Collection</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Zhu, Ming‐Xiao ; Deng, Ting ; Dong, Lei ; Chen, Ji‐Ming ; Dang, Zhi‐Min</creator><creatorcontrib>Zhu, Ming‐Xiao ; Deng, Ting ; Dong, Lei ; Chen, Ji‐Ming ; Dang, Zhi‐Min</creatorcontrib><description>Polymer‐based dielectrics are extensively applied in various electrical and electronic devices such as capacitors, power transmission cables and microchips, in which a variety of distinct performances such as the dielectric and thermal properties are desired. To fulfil these properties, the emerging machine learning (ML) technique has been used to establish a surrogate model for the structure–property linkage analysis, which provides an effective tool for the rational design of the chemical and morphological structure of polymers/nanocomposites. In this article, the authors reviewed the recent progress in the ML algorithms and their applications in the rational design of polymer‐based dielectrics. The main routes for collecting training data including online libraries, experiments and high‐throughput computations are first summarized. The fingerprints charactering the microstructures of polymers/nanocomposites are presented, followed by the illustration of ML models to establish a mapping between the fingerprinted input and the target properties. Further, inverse design methods such as evolution searching strategies and generative models are described, which are exploited to accelerate the discovery of new polymer‐based dielectrics. Moreover, structure–property linkage analysis techniques such as Pearson correlation calculation, decision‐tree‐based methods and interpretable neural networks are summarized to identify the key features affecting the target properties. The future development prospects of the ML‐driven design method for polymer‐based dielectrics are also presented in this review.</description><identifier>ISSN: 2514-3255</identifier><identifier>EISSN: 2514-3255</identifier><identifier>DOI: 10.1049/nde2.12029</identifier><language>eng</language><publisher>Beijing: John Wiley &amp; Sons, Inc</publisher><subject>Algorithms ; Datasets ; Design analysis ; Design techniques ; Dielectric properties ; Electric cables ; Energy storage ; Experiments ; fingerprinting ; Genomes ; Heat conductivity ; Inverse design ; Machine learning ; Methods ; Nanocomposites ; Neural networks ; Polymers ; polymer‐based dielectrics ; structure‐property linkage analysis ; Thermodynamic properties</subject><ispartof>IET Nanodielectrics, 2022-03, Vol.5 (1), p.24-38</ispartof><rights>2021 The Authors. published by John Wiley &amp; Sons Ltd on behalf of The Institution of Engineering and Technology.</rights><rights>2022. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3679-dddce0c0566078be7dc0ecd9d8be9e618152f6e34d55d7b9ac9bd6d024b06bc13</citedby><cites>FETCH-LOGICAL-c3679-dddce0c0566078be7dc0ecd9d8be9e618152f6e34d55d7b9ac9bd6d024b06bc13</cites><orcidid>0000-0001-6154-7147</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fnde2.12029$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3092322942?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,11562,25753,27924,27925,37012,44590,46052,46476</link.rule.ids></links><search><creatorcontrib>Zhu, Ming‐Xiao</creatorcontrib><creatorcontrib>Deng, Ting</creatorcontrib><creatorcontrib>Dong, Lei</creatorcontrib><creatorcontrib>Chen, Ji‐Ming</creatorcontrib><creatorcontrib>Dang, Zhi‐Min</creatorcontrib><title>Review of machine learning‐driven design of polymer‐based dielectrics</title><title>IET Nanodielectrics</title><description>Polymer‐based dielectrics are extensively applied in various electrical and electronic devices such as capacitors, power transmission cables and microchips, in which a variety of distinct performances such as the dielectric and thermal properties are desired. To fulfil these properties, the emerging machine learning (ML) technique has been used to establish a surrogate model for the structure–property linkage analysis, which provides an effective tool for the rational design of the chemical and morphological structure of polymers/nanocomposites. In this article, the authors reviewed the recent progress in the ML algorithms and their applications in the rational design of polymer‐based dielectrics. The main routes for collecting training data including online libraries, experiments and high‐throughput computations are first summarized. The fingerprints charactering the microstructures of polymers/nanocomposites are presented, followed by the illustration of ML models to establish a mapping between the fingerprinted input and the target properties. Further, inverse design methods such as evolution searching strategies and generative models are described, which are exploited to accelerate the discovery of new polymer‐based dielectrics. Moreover, structure–property linkage analysis techniques such as Pearson correlation calculation, decision‐tree‐based methods and interpretable neural networks are summarized to identify the key features affecting the target properties. The future development prospects of the ML‐driven design method for polymer‐based dielectrics are also presented in this review.</description><subject>Algorithms</subject><subject>Datasets</subject><subject>Design analysis</subject><subject>Design techniques</subject><subject>Dielectric properties</subject><subject>Electric cables</subject><subject>Energy storage</subject><subject>Experiments</subject><subject>fingerprinting</subject><subject>Genomes</subject><subject>Heat conductivity</subject><subject>Inverse design</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Nanocomposites</subject><subject>Neural networks</subject><subject>Polymers</subject><subject>polymer‐based dielectrics</subject><subject>structure‐property linkage analysis</subject><subject>Thermodynamic properties</subject><issn>2514-3255</issn><issn>2514-3255</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kM1KAzEQxxdRsGgvPsGCN6F1kv1qjlKrFoqC6Dkkmdmast2tST_ozUfwGX0Ss10RT54yZH7zm-EfRRcMhgxScV0j8SHjwMVR1OMZSwcJz7LjP_Vp1Pd-AQAcBCRs1Iumz7S1tIubMl4q82ZriitSrrb1_OvjE53dUh0jeTuvW2bVVPsludDSyhPGaKkis3bW-PPopFSVp_7Pexa93k1exg-D2dP9dHwzG5gkL8QAEQ2BgSzPoRhpKtAAGRQYakE5G7GMlzklKWYZFlooIzTmCDzVkGvDkrNo2nmxUQu5cnap3F42ysrDR-PmUrm1NRXJIM-RWFkES1omTIR1I9BMG51RwnlwXXaulWveN-TXctFsXB3OlwkIHhCRttRVRxnXeO-o_N3KQLbJyzZ5eUg-wKyDd7ai_T-kfLyd8G7mGykFh50</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Zhu, Ming‐Xiao</creator><creator>Deng, Ting</creator><creator>Dong, Lei</creator><creator>Chen, Ji‐Ming</creator><creator>Dang, Zhi‐Min</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6154-7147</orcidid></search><sort><creationdate>202203</creationdate><title>Review of machine learning‐driven design of polymer‐based dielectrics</title><author>Zhu, Ming‐Xiao ; Deng, Ting ; Dong, Lei ; Chen, Ji‐Ming ; Dang, Zhi‐Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3679-dddce0c0566078be7dc0ecd9d8be9e618152f6e34d55d7b9ac9bd6d024b06bc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Datasets</topic><topic>Design analysis</topic><topic>Design techniques</topic><topic>Dielectric properties</topic><topic>Electric cables</topic><topic>Energy storage</topic><topic>Experiments</topic><topic>fingerprinting</topic><topic>Genomes</topic><topic>Heat conductivity</topic><topic>Inverse design</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Nanocomposites</topic><topic>Neural networks</topic><topic>Polymers</topic><topic>polymer‐based dielectrics</topic><topic>structure‐property linkage analysis</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Ming‐Xiao</creatorcontrib><creatorcontrib>Deng, Ting</creatorcontrib><creatorcontrib>Dong, Lei</creatorcontrib><creatorcontrib>Chen, Ji‐Ming</creatorcontrib><creatorcontrib>Dang, Zhi‐Min</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>Wiley-Blackwell Backfiles (Open access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IET Nanodielectrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Ming‐Xiao</au><au>Deng, Ting</au><au>Dong, Lei</au><au>Chen, Ji‐Ming</au><au>Dang, Zhi‐Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Review of machine learning‐driven design of polymer‐based dielectrics</atitle><jtitle>IET Nanodielectrics</jtitle><date>2022-03</date><risdate>2022</risdate><volume>5</volume><issue>1</issue><spage>24</spage><epage>38</epage><pages>24-38</pages><issn>2514-3255</issn><eissn>2514-3255</eissn><abstract>Polymer‐based dielectrics are extensively applied in various electrical and electronic devices such as capacitors, power transmission cables and microchips, in which a variety of distinct performances such as the dielectric and thermal properties are desired. To fulfil these properties, the emerging machine learning (ML) technique has been used to establish a surrogate model for the structure–property linkage analysis, which provides an effective tool for the rational design of the chemical and morphological structure of polymers/nanocomposites. In this article, the authors reviewed the recent progress in the ML algorithms and their applications in the rational design of polymer‐based dielectrics. The main routes for collecting training data including online libraries, experiments and high‐throughput computations are first summarized. The fingerprints charactering the microstructures of polymers/nanocomposites are presented, followed by the illustration of ML models to establish a mapping between the fingerprinted input and the target properties. Further, inverse design methods such as evolution searching strategies and generative models are described, which are exploited to accelerate the discovery of new polymer‐based dielectrics. Moreover, structure–property linkage analysis techniques such as Pearson correlation calculation, decision‐tree‐based methods and interpretable neural networks are summarized to identify the key features affecting the target properties. The future development prospects of the ML‐driven design method for polymer‐based dielectrics are also presented in this review.</abstract><cop>Beijing</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1049/nde2.12029</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-6154-7147</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2514-3255
ispartof IET Nanodielectrics, 2022-03, Vol.5 (1), p.24-38
issn 2514-3255
2514-3255
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_e7d6de1f79ac4f319be780b1bcb5e322
source IET Digital Library - eJournals; Wiley-Blackwell Open Access Collection; Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Algorithms
Datasets
Design analysis
Design techniques
Dielectric properties
Electric cables
Energy storage
Experiments
fingerprinting
Genomes
Heat conductivity
Inverse design
Machine learning
Methods
Nanocomposites
Neural networks
Polymers
polymer‐based dielectrics
structure‐property linkage analysis
Thermodynamic properties
title Review of machine learning‐driven design of polymer‐based dielectrics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A32%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Review%20of%20machine%20learning%E2%80%90driven%20design%20of%20polymer%E2%80%90based%20dielectrics&rft.jtitle=IET%20Nanodielectrics&rft.au=Zhu,%20Ming%E2%80%90Xiao&rft.date=2022-03&rft.volume=5&rft.issue=1&rft.spage=24&rft.epage=38&rft.pages=24-38&rft.issn=2514-3255&rft.eissn=2514-3255&rft_id=info:doi/10.1049/nde2.12029&rft_dat=%3Cproquest_doaj_%3E3092322942%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3679-dddce0c0566078be7dc0ecd9d8be9e618152f6e34d55d7b9ac9bd6d024b06bc13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3092322942&rft_id=info:pmid/&rfr_iscdi=true