Loading…
Isolation of Cellulose Nanofibers : Effect of Biotreatment on Hydrogen Bonding Network in Wood Fibers
The use of cellulose nanofibres as high-strength reinforcement in nano-biocomposites is very enthusiastically being explored due to their biodegradability, renewability, and high specific strength properties. Cellulose, through a regular network of inter- and intramolecular hydrogen bonds, is organi...
Saved in:
Published in: | International journal of polymer science 2011-01, Vol.2011 (2011), p.1-6 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The use of cellulose nanofibres as high-strength reinforcement in nano-biocomposites is very enthusiastically being explored due to their biodegradability, renewability, and high specific strength properties. Cellulose, through a regular network of inter- and intramolecular hydrogen bonds, is organized into perfect stereoregular configuration called microfibrils which further aggregate to different levels to form the fibre. Intermolecular hydrogen bonding at various levels, especially at the elementary level, is the major binding force that one need to overcome to reverse engineer these fibres into their microfibrillar level. This paper briefly describes a novel enzymatic fibre pretreatment developed to facilitate the isolation of cellulose microfibrils and explores effectiveness of biotreatment on the intermolecular and intramolecular hydrogen bonding in the fiber. Bleached Kraft Softwood Pulp was treated with a fungus (OS1) isolated from elm tree infected with Dutch elm disease. Cellulose microfibrils were isolated from these treated fibers by high-shear refining. The % yield of nanofibres and their diameter distribution ( |
---|---|
ISSN: | 1687-9422 1687-9430 |
DOI: | 10.1155/2011/279610 |