Loading…
Facilitated Transport Membranes With Ionic Liquids for CO2 Separations
In recent years, significant development milestones have been reached in the areas of facilitated transport membranes and ionic liquids for CO2 separations, making the combination of these materials an incredibly promising technology platform for gas treatment processes, such as post-combustion and...
Saved in:
Published in: | Frontiers in chemistry 2020-08, Vol.8, p.637-637 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In recent years, significant development milestones have been reached in the areas of facilitated transport membranes and ionic liquids for CO2 separations, making the combination of these materials an incredibly promising technology platform for gas treatment processes, such as post-combustion and direct CO2 capture from air in buildings, submarines, and spacecraft. The developments in facilitated transport membranes involve consistently surpassing the Robeson upper bound for dense polymer membranes, demonstrating a high CO2 flux across the membrane while maintaining very high selectivity. This mini review focuses on the recent developments of facilitated transport membranes, in particular discussing the challenges and opportunities associated with the incorporation of ionic liquids as fixed and mobile carriers for separations of CO2 at low partial pressures ( |
---|---|
ISSN: | 2296-2646 2296-2646 |
DOI: | 10.3389/fchem.2020.00637 |