Loading…
Developmental cell death regulates lineage-related interneuron-oligodendroglia functional clusters and oligodendrocyte homeostasis
The first wave of oligodendrocyte precursor cells (firstOPCs) and most GABAergic interneurons share common embryonic origins. Cortical firstOPCs are thought to be replaced by other OPC populations shortly after birth, maintaining a consistent OPC density and making postnatal interactions between fir...
Saved in:
Published in: | Nature communications 2019-09, Vol.10 (1), p.4249-13, Article 4249 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c574t-e87d3a52d6a54dbc347cca8370292e2887c51c5758e39bb604a4e65fc1f3a04f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c574t-e87d3a52d6a54dbc347cca8370292e2887c51c5758e39bb604a4e65fc1f3a04f3 |
container_end_page | 13 |
container_issue | 1 |
container_start_page | 4249 |
container_title | Nature communications |
container_volume | 10 |
creator | Orduz, David Benamer, Najate Ortolani, Domiziana Coppola, Eva Vigier, Lisa Pierani, Alessandra Angulo, María Cecilia |
description | The first wave of oligodendrocyte precursor cells (firstOPCs) and most GABAergic interneurons share common embryonic origins. Cortical firstOPCs are thought to be replaced by other OPC populations shortly after birth, maintaining a consistent OPC density and making postnatal interactions between firstOPCs and ontogenetically-related interneurons unlikely. Challenging these ideas, we show that a cortical firstOPC subpopulation survives and forms functional cell clusters with lineage-related interneurons. Favored by a common embryonic origin, these clusters display unexpected preferential synaptic connectivity and are anatomically maintained after firstOPCs differentiate into myelinating oligodendrocytes. While the concomitant rescue of interneurons and firstOPCs committed to die causes an exacerbated neuronal inhibition, it abolishes interneuron-firstOPC high synaptic connectivity. Further, the number of other oligodendroglia populations increases through a non-cell-autonomous mechanism, impacting myelination. These findings demonstrate unprecedented roles of interneuron and firstOPC apoptosis in regulating lineage-related cell interactions and the homeostatic oligodendroglia density.
During cortical development the first wave of oligodendrocyte precursor cells (OPCs) completely disappear by programmed cell death, so that it is presumed that this OPC population does not play a role at postnatal stages. In this study, authors use lineage tracing in different transgenic mice to show that a subpopulation of OPCs from the first wave survives at postnatal stages and display a preferential synaptic connectivity with their ontogenetically-related interneurons compared to other OPCs or interneurons |
doi_str_mv | 10.1038/s41467-019-11904-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e834776c77214421b63a8800003a716f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e834776c77214421b63a8800003a716f</doaj_id><sourcerecordid>2292925777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c574t-e87d3a52d6a54dbc347cca8370292e2887c51c5758e39bb604a4e65fc1f3a04f3</originalsourceid><addsrcrecordid>eNp9kktv1DAURiMEolXpH2CBIrGBRcCvxM4GqSqPVhqJDaytO85NxiOPPdjJSN3yy3EmpUy7IFnEsc89Tny_onhNyQdKuPqYBBWNrAhtK0pbIirxrDhnRNCKSsafn4zPisuUtiRfvKVKiJfFGac1F7QR58Xvz3hAF_Y79CO40qBzZYcwbsqIw-RgxFQ66xEGrCLO711p_YjR4xSDr4KzQ-jQdzEMzkLZT96MNvjZ5aaUwVSC78oTztyNWG7CDkMaIdn0qnjRg0t4ef-8KH5-_fLj-qZaff92e321qkwtxVihkh2HmnUN1KJbGy6kMaC4JKxlyJSSpqYZrRXydr1uiACBTd0b2nMgoucXxe3i7QJs9T7aHcQ7HcDq40SIg4Y4WuNQo8p22RgpGRWC0XXDQanjEYKkzez6tLj203qHncmnF8E9kj5e8Xajh3DQjaxzu1QWvF8EmydlN1crPc8Rxgmr2-ZAM_vufrMYfk2YRr2zae4UeAxT0oy1vJVUtDyjb5-g2zDF3I0jle9aSpkptlAmhpQi9g9fQIme06WXdOmcLn1Mlxa56M3pLz-U_M1SBvgCpLzkB4z_9v6P9g-KN9xo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2292925777</pqid></control><display><type>article</type><title>Developmental cell death regulates lineage-related interneuron-oligodendroglia functional clusters and oligodendrocyte homeostasis</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central Free</source><source>Nature</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Orduz, David ; Benamer, Najate ; Ortolani, Domiziana ; Coppola, Eva ; Vigier, Lisa ; Pierani, Alessandra ; Angulo, María Cecilia</creator><creatorcontrib>Orduz, David ; Benamer, Najate ; Ortolani, Domiziana ; Coppola, Eva ; Vigier, Lisa ; Pierani, Alessandra ; Angulo, María Cecilia</creatorcontrib><description>The first wave of oligodendrocyte precursor cells (firstOPCs) and most GABAergic interneurons share common embryonic origins. Cortical firstOPCs are thought to be replaced by other OPC populations shortly after birth, maintaining a consistent OPC density and making postnatal interactions between firstOPCs and ontogenetically-related interneurons unlikely. Challenging these ideas, we show that a cortical firstOPC subpopulation survives and forms functional cell clusters with lineage-related interneurons. Favored by a common embryonic origin, these clusters display unexpected preferential synaptic connectivity and are anatomically maintained after firstOPCs differentiate into myelinating oligodendrocytes. While the concomitant rescue of interneurons and firstOPCs committed to die causes an exacerbated neuronal inhibition, it abolishes interneuron-firstOPC high synaptic connectivity. Further, the number of other oligodendroglia populations increases through a non-cell-autonomous mechanism, impacting myelination. These findings demonstrate unprecedented roles of interneuron and firstOPC apoptosis in regulating lineage-related cell interactions and the homeostatic oligodendroglia density.
During cortical development the first wave of oligodendrocyte precursor cells (OPCs) completely disappear by programmed cell death, so that it is presumed that this OPC population does not play a role at postnatal stages. In this study, authors use lineage tracing in different transgenic mice to show that a subpopulation of OPCs from the first wave survives at postnatal stages and display a preferential synaptic connectivity with their ontogenetically-related interneurons compared to other OPCs or interneurons</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-019-11904-4</identifier><identifier>PMID: 31534164</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13 ; 13/51 ; 14 ; 14/1 ; 14/19 ; 631/378/1934 ; 631/378/2596/1705 ; 64/60 ; 9/74 ; Animals ; Apoptosis ; Apoptosis - physiology ; Cell death ; Cell interactions ; Central Nervous System - cytology ; Central Nervous System - embryology ; Clusters ; Cortex ; Density ; Embryos ; Female ; GABAergic Neurons - cytology ; Glial stem cells ; Homeodomain Proteins - metabolism ; Homeostasis ; Humanities and Social Sciences ; Interneurons ; Interneurons - cytology ; Interneurons - metabolism ; Life Sciences ; Male ; Mice ; Mice, Transgenic ; multidisciplinary ; Myelination ; Nerve Tissue Proteins - metabolism ; Neural networks ; Neurogenesis - physiology ; Oligodendrocyte Precursor Cells - metabolism ; Oligodendrocytes ; Oligodendroglia - cytology ; Oligodendroglia - metabolism ; Population ; Populations ; Science ; Science (multidisciplinary) ; Transcription factors ; Transgenic animals ; γ-Aminobutyric acid</subject><ispartof>Nature communications, 2019-09, Vol.10 (1), p.4249-13, Article 4249</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c574t-e87d3a52d6a54dbc347cca8370292e2887c51c5758e39bb604a4e65fc1f3a04f3</citedby><cites>FETCH-LOGICAL-c574t-e87d3a52d6a54dbc347cca8370292e2887c51c5758e39bb604a4e65fc1f3a04f3</cites><orcidid>0000-0002-4198-2691 ; 0000-0002-0758-0496</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2292925777/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2292925777?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31534164$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02302596$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Orduz, David</creatorcontrib><creatorcontrib>Benamer, Najate</creatorcontrib><creatorcontrib>Ortolani, Domiziana</creatorcontrib><creatorcontrib>Coppola, Eva</creatorcontrib><creatorcontrib>Vigier, Lisa</creatorcontrib><creatorcontrib>Pierani, Alessandra</creatorcontrib><creatorcontrib>Angulo, María Cecilia</creatorcontrib><title>Developmental cell death regulates lineage-related interneuron-oligodendroglia functional clusters and oligodendrocyte homeostasis</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>The first wave of oligodendrocyte precursor cells (firstOPCs) and most GABAergic interneurons share common embryonic origins. Cortical firstOPCs are thought to be replaced by other OPC populations shortly after birth, maintaining a consistent OPC density and making postnatal interactions between firstOPCs and ontogenetically-related interneurons unlikely. Challenging these ideas, we show that a cortical firstOPC subpopulation survives and forms functional cell clusters with lineage-related interneurons. Favored by a common embryonic origin, these clusters display unexpected preferential synaptic connectivity and are anatomically maintained after firstOPCs differentiate into myelinating oligodendrocytes. While the concomitant rescue of interneurons and firstOPCs committed to die causes an exacerbated neuronal inhibition, it abolishes interneuron-firstOPC high synaptic connectivity. Further, the number of other oligodendroglia populations increases through a non-cell-autonomous mechanism, impacting myelination. These findings demonstrate unprecedented roles of interneuron and firstOPC apoptosis in regulating lineage-related cell interactions and the homeostatic oligodendroglia density.
During cortical development the first wave of oligodendrocyte precursor cells (OPCs) completely disappear by programmed cell death, so that it is presumed that this OPC population does not play a role at postnatal stages. In this study, authors use lineage tracing in different transgenic mice to show that a subpopulation of OPCs from the first wave survives at postnatal stages and display a preferential synaptic connectivity with their ontogenetically-related interneurons compared to other OPCs or interneurons</description><subject>13</subject><subject>13/51</subject><subject>14</subject><subject>14/1</subject><subject>14/19</subject><subject>631/378/1934</subject><subject>631/378/2596/1705</subject><subject>64/60</subject><subject>9/74</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Apoptosis - physiology</subject><subject>Cell death</subject><subject>Cell interactions</subject><subject>Central Nervous System - cytology</subject><subject>Central Nervous System - embryology</subject><subject>Clusters</subject><subject>Cortex</subject><subject>Density</subject><subject>Embryos</subject><subject>Female</subject><subject>GABAergic Neurons - cytology</subject><subject>Glial stem cells</subject><subject>Homeodomain Proteins - metabolism</subject><subject>Homeostasis</subject><subject>Humanities and Social Sciences</subject><subject>Interneurons</subject><subject>Interneurons - cytology</subject><subject>Interneurons - metabolism</subject><subject>Life Sciences</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>multidisciplinary</subject><subject>Myelination</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Neural networks</subject><subject>Neurogenesis - physiology</subject><subject>Oligodendrocyte Precursor Cells - metabolism</subject><subject>Oligodendrocytes</subject><subject>Oligodendroglia - cytology</subject><subject>Oligodendroglia - metabolism</subject><subject>Population</subject><subject>Populations</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Transcription factors</subject><subject>Transgenic animals</subject><subject>γ-Aminobutyric acid</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kktv1DAURiMEolXpH2CBIrGBRcCvxM4GqSqPVhqJDaytO85NxiOPPdjJSN3yy3EmpUy7IFnEsc89Tny_onhNyQdKuPqYBBWNrAhtK0pbIirxrDhnRNCKSsafn4zPisuUtiRfvKVKiJfFGac1F7QR58Xvz3hAF_Y79CO40qBzZYcwbsqIw-RgxFQ66xEGrCLO711p_YjR4xSDr4KzQ-jQdzEMzkLZT96MNvjZ5aaUwVSC78oTztyNWG7CDkMaIdn0qnjRg0t4ef-8KH5-_fLj-qZaff92e321qkwtxVihkh2HmnUN1KJbGy6kMaC4JKxlyJSSpqYZrRXydr1uiACBTd0b2nMgoucXxe3i7QJs9T7aHcQ7HcDq40SIg4Y4WuNQo8p22RgpGRWC0XXDQanjEYKkzez6tLj203qHncmnF8E9kj5e8Xajh3DQjaxzu1QWvF8EmydlN1crPc8Rxgmr2-ZAM_vufrMYfk2YRr2zae4UeAxT0oy1vJVUtDyjb5-g2zDF3I0jle9aSpkptlAmhpQi9g9fQIme06WXdOmcLn1Mlxa56M3pLz-U_M1SBvgCpLzkB4z_9v6P9g-KN9xo</recordid><startdate>20190918</startdate><enddate>20190918</enddate><creator>Orduz, David</creator><creator>Benamer, Najate</creator><creator>Ortolani, Domiziana</creator><creator>Coppola, Eva</creator><creator>Vigier, Lisa</creator><creator>Pierani, Alessandra</creator><creator>Angulo, María Cecilia</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4198-2691</orcidid><orcidid>https://orcid.org/0000-0002-0758-0496</orcidid></search><sort><creationdate>20190918</creationdate><title>Developmental cell death regulates lineage-related interneuron-oligodendroglia functional clusters and oligodendrocyte homeostasis</title><author>Orduz, David ; Benamer, Najate ; Ortolani, Domiziana ; Coppola, Eva ; Vigier, Lisa ; Pierani, Alessandra ; Angulo, María Cecilia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c574t-e87d3a52d6a54dbc347cca8370292e2887c51c5758e39bb604a4e65fc1f3a04f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>13</topic><topic>13/51</topic><topic>14</topic><topic>14/1</topic><topic>14/19</topic><topic>631/378/1934</topic><topic>631/378/2596/1705</topic><topic>64/60</topic><topic>9/74</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Apoptosis - physiology</topic><topic>Cell death</topic><topic>Cell interactions</topic><topic>Central Nervous System - cytology</topic><topic>Central Nervous System - embryology</topic><topic>Clusters</topic><topic>Cortex</topic><topic>Density</topic><topic>Embryos</topic><topic>Female</topic><topic>GABAergic Neurons - cytology</topic><topic>Glial stem cells</topic><topic>Homeodomain Proteins - metabolism</topic><topic>Homeostasis</topic><topic>Humanities and Social Sciences</topic><topic>Interneurons</topic><topic>Interneurons - cytology</topic><topic>Interneurons - metabolism</topic><topic>Life Sciences</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>multidisciplinary</topic><topic>Myelination</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Neural networks</topic><topic>Neurogenesis - physiology</topic><topic>Oligodendrocyte Precursor Cells - metabolism</topic><topic>Oligodendrocytes</topic><topic>Oligodendroglia - cytology</topic><topic>Oligodendroglia - metabolism</topic><topic>Population</topic><topic>Populations</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Transcription factors</topic><topic>Transgenic animals</topic><topic>γ-Aminobutyric acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Orduz, David</creatorcontrib><creatorcontrib>Benamer, Najate</creatorcontrib><creatorcontrib>Ortolani, Domiziana</creatorcontrib><creatorcontrib>Coppola, Eva</creatorcontrib><creatorcontrib>Vigier, Lisa</creatorcontrib><creatorcontrib>Pierani, Alessandra</creatorcontrib><creatorcontrib>Angulo, María Cecilia</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Proquest Health & Medical Complete</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Orduz, David</au><au>Benamer, Najate</au><au>Ortolani, Domiziana</au><au>Coppola, Eva</au><au>Vigier, Lisa</au><au>Pierani, Alessandra</au><au>Angulo, María Cecilia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Developmental cell death regulates lineage-related interneuron-oligodendroglia functional clusters and oligodendrocyte homeostasis</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2019-09-18</date><risdate>2019</risdate><volume>10</volume><issue>1</issue><spage>4249</spage><epage>13</epage><pages>4249-13</pages><artnum>4249</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The first wave of oligodendrocyte precursor cells (firstOPCs) and most GABAergic interneurons share common embryonic origins. Cortical firstOPCs are thought to be replaced by other OPC populations shortly after birth, maintaining a consistent OPC density and making postnatal interactions between firstOPCs and ontogenetically-related interneurons unlikely. Challenging these ideas, we show that a cortical firstOPC subpopulation survives and forms functional cell clusters with lineage-related interneurons. Favored by a common embryonic origin, these clusters display unexpected preferential synaptic connectivity and are anatomically maintained after firstOPCs differentiate into myelinating oligodendrocytes. While the concomitant rescue of interneurons and firstOPCs committed to die causes an exacerbated neuronal inhibition, it abolishes interneuron-firstOPC high synaptic connectivity. Further, the number of other oligodendroglia populations increases through a non-cell-autonomous mechanism, impacting myelination. These findings demonstrate unprecedented roles of interneuron and firstOPC apoptosis in regulating lineage-related cell interactions and the homeostatic oligodendroglia density.
During cortical development the first wave of oligodendrocyte precursor cells (OPCs) completely disappear by programmed cell death, so that it is presumed that this OPC population does not play a role at postnatal stages. In this study, authors use lineage tracing in different transgenic mice to show that a subpopulation of OPCs from the first wave survives at postnatal stages and display a preferential synaptic connectivity with their ontogenetically-related interneurons compared to other OPCs or interneurons</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31534164</pmid><doi>10.1038/s41467-019-11904-4</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4198-2691</orcidid><orcidid>https://orcid.org/0000-0002-0758-0496</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2019-09, Vol.10 (1), p.4249-13, Article 4249 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_e834776c77214421b63a8800003a716f |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central Free; Nature; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 13 13/51 14 14/1 14/19 631/378/1934 631/378/2596/1705 64/60 9/74 Animals Apoptosis Apoptosis - physiology Cell death Cell interactions Central Nervous System - cytology Central Nervous System - embryology Clusters Cortex Density Embryos Female GABAergic Neurons - cytology Glial stem cells Homeodomain Proteins - metabolism Homeostasis Humanities and Social Sciences Interneurons Interneurons - cytology Interneurons - metabolism Life Sciences Male Mice Mice, Transgenic multidisciplinary Myelination Nerve Tissue Proteins - metabolism Neural networks Neurogenesis - physiology Oligodendrocyte Precursor Cells - metabolism Oligodendrocytes Oligodendroglia - cytology Oligodendroglia - metabolism Population Populations Science Science (multidisciplinary) Transcription factors Transgenic animals γ-Aminobutyric acid |
title | Developmental cell death regulates lineage-related interneuron-oligodendroglia functional clusters and oligodendrocyte homeostasis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A56%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Developmental%20cell%20death%20regulates%20lineage-related%20interneuron-oligodendroglia%20functional%20clusters%20and%20oligodendrocyte%20homeostasis&rft.jtitle=Nature%20communications&rft.au=Orduz,%20David&rft.date=2019-09-18&rft.volume=10&rft.issue=1&rft.spage=4249&rft.epage=13&rft.pages=4249-13&rft.artnum=4249&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-019-11904-4&rft_dat=%3Cproquest_doaj_%3E2292925777%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c574t-e87d3a52d6a54dbc347cca8370292e2887c51c5758e39bb604a4e65fc1f3a04f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2292925777&rft_id=info:pmid/31534164&rfr_iscdi=true |