Loading…
Data-Driven Proxy Models for Improving Advanced Well Completion Design under Uncertainty
In order to improve the design of advanced wells, the performance of such wells needs to be carefully assessed by taking the reservoir uncertainties into account. This research aimed to develop data-driven proxy models for the simulation and assessment of oil recovery through advanced wells under un...
Saved in:
Published in: | Energies (Basel) 2022-10, Vol.15 (20), p.7484, Article 7484 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In order to improve the design of advanced wells, the performance of such wells needs to be carefully assessed by taking the reservoir uncertainties into account. This research aimed to develop data-driven proxy models for the simulation and assessment of oil recovery through advanced wells under uncertainty. An artificial neural network (ANN) was employed to create accurate and computationally efficient proxy models as an alternative to physics-based integrated well–reservoir models created by the Eclipse® reservoir simulator. The simulation speed and accuracy of the data-driven proxy models compared to physic-driven models were then evaluated. The evaluation showed that while the developed proxy models are 350 times faster, they can predict the production of oil and unwanted fluids through advanced wells with a mean error of less than 1% and 4%, respectively. As a result, the data-driven proxy models can be considered an efficient tool for uncertainty analysis where several simulations need to be performed to cover all possible scenarios. In this study, the developed proxy models were applied for uncertainty quantification of oil recovery from advanced wells completed with different types of downhole flow control devices (FCDs). According to the obtained results, compared to other types of well completion design, advanced wells completed with autonomous inflow control valve (AICV) technology have the best performance in limiting the production of unwanted fluids and are able to reduce the associated risk by 91%. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en15207484 |