Loading…

A Critical Assessment of the Performance of Magnetic and Electronic Indices of Aromaticity

The lack of reference aromatic systems in the realm of inorganic aromatic compounds makes the evaluation of aromaticity in all-metal and semimetal clusters a difficult task. To date, calculation of nucleus-independent chemical shifts (NICS) has been the most widely used method to discuss aromaticity...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry (Basel) 2010-06, Vol.2 (2), p.1156-1179
Main Authors: Solà, Miquel, Feixas, Ferran, Jiménez-Halla, J. Oscar C., Matito, Eduard, Poater, Jordi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The lack of reference aromatic systems in the realm of inorganic aromatic compounds makes the evaluation of aromaticity in all-metal and semimetal clusters a difficult task. To date, calculation of nucleus-independent chemical shifts (NICS) has been the most widely used method to discuss aromaticity in these systems. In the first part of this work, we briefly review our previous studies, showing some pitfalls of the NICS indicator of aromaticity in organic molecules. Then, we refer to our study on the performance of some aromaticity indices in a series of 15 aromaticity tests, which can be used to analyze the advantages and drawbacks of aromaticity descriptors. It is shown that indices based on the study of electron delocalization are the most accurate among those analyzed in the series of proposed tests, while NICS(1)zz and NICS(0)πzz present the best behavior among NICS indices. In the second part, we discuss the use of NICS and electronic multicenter indices (MCI) in inorganic clusters. In particular, we evaluate the aromaticity of two series of all-metal and semimetal clusters with predictable aromaticity trends by means of NICS and MCI. Results show that the expected trends are generally better reproduced by MCI than NICS. It is concluded that NICS(0)π and NICS(0)πzz are the kind of NICS that perform the best among the different NICS indices analyzed for the studied series of inorganic compounds.
ISSN:2073-8994
2073-8994
DOI:10.3390/sym2021156