Loading…

Chemotaxonomy of domesticated grasses: a pathway to understanding the origins of agriculture

The grass family (Poaceae) is one of the most economically important plant groups in the world today. In particular many major food crops, including rice, wheat, maize, rye, barley, oats and millet, are grasses that were domesticated from wild progenitors during the Holocene. Archaeological evidence...

Full description

Saved in:
Bibliographic Details
Published in:Journal of micropalaeontology 2019-06, Vol.38 (1), p.83-95
Main Authors: Jardine, Phillip E., Gosling, William D., Lomax, Barry H., Julier, Adele C. M., Fraser, Wesley T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The grass family (Poaceae) is one of the most economically important plant groups in the world today. In particular many major food crops, including rice, wheat, maize, rye, barley, oats and millet, are grasses that were domesticated from wild progenitors during the Holocene. Archaeological evidence has provided key information on domestication pathways of different grass lineages through time and space. However, the most abundant empirical archive of floral change – the pollen record – has been underused for reconstructing grass domestication patterns because of the challenges of classifying grass pollen grains based on their morphology alone. Here, we test the potential of a novel approach for pollen classification based on the chemical signature of the pollen grains measured using Fourier transform infrared (FTIR) microspectroscopy. We use a dataset of eight domesticated and wild grass species, classified using k-nearest neighbour classification coupled with leave-one-out cross validation. We demonstrate a 95 % classification success rate on training data and an 82 % classification success rate on validation data. This result shows that FTIR spectroscopy can provide enhanced taxonomic resolution enabling species level assignment from pollen. This will enable the full testing of the timing and drivers of domestication and agriculture through the Holocene.
ISSN:2041-4978
0262-821X
2041-4978
DOI:10.5194/jm-38-83-2019