Loading…
Thermal resistivity and hydrodynamics of the degenerate electron fluid in antimony
Detecting hydrodynamic fingerprints in the flow of electrons in solids constitutes a dynamic field of investigation in contemporary condensed matter physics. Most attention has been focused on the regime near the degeneracy temperature when the thermal velocity can present a spatially modulated prof...
Saved in:
Published in: | Nature communications 2021-01, Vol.12 (1), p.195-195, Article 195 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c640t-e530186bb55d2c78444a3ff7d523e235aaf2db967d74050f7cfc2dbcc15f6a2a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c640t-e530186bb55d2c78444a3ff7d523e235aaf2db967d74050f7cfc2dbcc15f6a2a3 |
container_end_page | 195 |
container_issue | 1 |
container_start_page | 195 |
container_title | Nature communications |
container_volume | 12 |
creator | Jaoui, Alexandre Fauqué, Benoît Behnia, Kamran |
description | Detecting hydrodynamic fingerprints in the flow of electrons in solids constitutes a dynamic field of investigation in contemporary condensed matter physics. Most attention has been focused on the regime near the degeneracy temperature when the thermal velocity can present a spatially modulated profile. Here, we report on the observation of a hydrodynamic feature in the flow of quasi-ballistic degenerate electrons in bulk antimony. By scrutinizing the temperature dependence of thermal and electric resistivities, we detect a size-dependent departure from the Wiedemann-Franz law, unexpected in the momentum-relaxing picture of transport. This observation finds a natural explanation in the hydrodynamic picture, where upon warming, momentum-conserving collisions reduce quadratically in temperature both viscosity and thermal diffusivity. This effect has been established theoretically and experimentally in normal-state liquid
3
He. The comparison of electrons in antimony and fermions in
3
He paves the way to a quantification of momentum-conserving fermion-fermion collision rate in different Fermi liquids.
Viscous fermionic flow appears in liquid helium but rarely appears in metallic solid. Here, Jaoui et al. report a T-square thermal resistivity due to momentum conserving electronic scattering in semi-metallic antimony, which is in agreement with the hydrodynamic scenario. |
doi_str_mv | 10.1038/s41467-020-20420-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e8b895a669d844d29ecac35317b3e2a9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e8b895a669d844d29ecac35317b3e2a9</doaj_id><sourcerecordid>2476252025</sourcerecordid><originalsourceid>FETCH-LOGICAL-c640t-e530186bb55d2c78444a3ff7d523e235aaf2db967d74050f7cfc2dbcc15f6a2a3</originalsourceid><addsrcrecordid>eNp9Uk1r3DAQNaWlCWn-QA_F0Et7cKtv2ZdCCG0SWCiU9CxkabzWYkupZC_431e7TtIkh-ogDTPvvZkRryjeY_QFI1p_TQwzIStEUEUQy3fzqjjNEa6wJPT1k_ikOE9ph_KhDa4Ze1ucUJoZiDSnxa_bHuKohzJCcmlyezctpfa27Bcbg128Hp1JZejKqYfSwhY8RD1BCQOYKQZfdsPsbOl8Zk1uDH55V7zp9JDg_P49K37_-H57eV1tfl7dXF5sKiMYmirgFOFatC3nlhiZB2Oadp20nFAglGvdEds2QlrJEEedNJ3JCWMw74Qmmp4VN6uuDXqn7qIbdVxU0E4dEyFulY6TMwMoqNu64VqIxuY-ljRgtKGcYtnmXrrJWt9Wrbu5HcEa8FPUwzPR5xXverUNeyVlw6hkWeDzKtC_oF1fbNQhhyjGiDdijzP2032zGP7MkCY1umRgGLSHMCdFmBRcYEEO0I8voLswR5-_9YginCDCM4qsKBNDShG6xwkwUge3qNUtKrtFHd2iDit_eLryI-XBGxlAV0DKJb-F-K_3f2T_AiEIykY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2476252025</pqid></control><display><type>article</type><title>Thermal resistivity and hydrodynamics of the degenerate electron fluid in antimony</title><source>Publicly Available Content Database</source><source>Nature Journals Online</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Jaoui, Alexandre ; Fauqué, Benoît ; Behnia, Kamran</creator><creatorcontrib>Jaoui, Alexandre ; Fauqué, Benoît ; Behnia, Kamran</creatorcontrib><description>Detecting hydrodynamic fingerprints in the flow of electrons in solids constitutes a dynamic field of investigation in contemporary condensed matter physics. Most attention has been focused on the regime near the degeneracy temperature when the thermal velocity can present a spatially modulated profile. Here, we report on the observation of a hydrodynamic feature in the flow of quasi-ballistic degenerate electrons in bulk antimony. By scrutinizing the temperature dependence of thermal and electric resistivities, we detect a size-dependent departure from the Wiedemann-Franz law, unexpected in the momentum-relaxing picture of transport. This observation finds a natural explanation in the hydrodynamic picture, where upon warming, momentum-conserving collisions reduce quadratically in temperature both viscosity and thermal diffusivity. This effect has been established theoretically and experimentally in normal-state liquid
3
He. The comparison of electrons in antimony and fermions in
3
He paves the way to a quantification of momentum-conserving fermion-fermion collision rate in different Fermi liquids.
Viscous fermionic flow appears in liquid helium but rarely appears in metallic solid. Here, Jaoui et al. report a T-square thermal resistivity due to momentum conserving electronic scattering in semi-metallic antimony, which is in agreement with the hydrodynamic scenario.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-020-20420-9</identifier><identifier>PMID: 33420029</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/119/995 ; 639/766/119/999 ; Antimony ; Collision dynamics ; Collision rates ; Condensed matter physics ; Electric currents ; Electrical resistivity ; Electrons ; Fermi liquids ; Fermions ; Fluid dynamics ; Fluid flow ; Fluid mechanics ; Heat ; Helium ; Humanities and Social Sciences ; Hydrodynamics ; Life Sciences ; Liquid helium ; Lorenz number ; Metals ; Momentum ; multidisciplinary ; Science ; Science (multidisciplinary) ; Temperature dependence ; Thermal conductivity ; Thermal diffusivity ; Velocity ; Viscosity</subject><ispartof>Nature communications, 2021-01, Vol.12 (1), p.195-195, Article 195</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c640t-e530186bb55d2c78444a3ff7d523e235aaf2db967d74050f7cfc2dbcc15f6a2a3</citedby><cites>FETCH-LOGICAL-c640t-e530186bb55d2c78444a3ff7d523e235aaf2db967d74050f7cfc2dbcc15f6a2a3</cites><orcidid>0000-0002-2894-2054 ; 0000-0002-3855-8371 ; 0000-0001-8997-5645</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2476252025/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2476252025?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33420029$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-03110596$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Jaoui, Alexandre</creatorcontrib><creatorcontrib>Fauqué, Benoît</creatorcontrib><creatorcontrib>Behnia, Kamran</creatorcontrib><title>Thermal resistivity and hydrodynamics of the degenerate electron fluid in antimony</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Detecting hydrodynamic fingerprints in the flow of electrons in solids constitutes a dynamic field of investigation in contemporary condensed matter physics. Most attention has been focused on the regime near the degeneracy temperature when the thermal velocity can present a spatially modulated profile. Here, we report on the observation of a hydrodynamic feature in the flow of quasi-ballistic degenerate electrons in bulk antimony. By scrutinizing the temperature dependence of thermal and electric resistivities, we detect a size-dependent departure from the Wiedemann-Franz law, unexpected in the momentum-relaxing picture of transport. This observation finds a natural explanation in the hydrodynamic picture, where upon warming, momentum-conserving collisions reduce quadratically in temperature both viscosity and thermal diffusivity. This effect has been established theoretically and experimentally in normal-state liquid
3
He. The comparison of electrons in antimony and fermions in
3
He paves the way to a quantification of momentum-conserving fermion-fermion collision rate in different Fermi liquids.
Viscous fermionic flow appears in liquid helium but rarely appears in metallic solid. Here, Jaoui et al. report a T-square thermal resistivity due to momentum conserving electronic scattering in semi-metallic antimony, which is in agreement with the hydrodynamic scenario.</description><subject>639/766/119/995</subject><subject>639/766/119/999</subject><subject>Antimony</subject><subject>Collision dynamics</subject><subject>Collision rates</subject><subject>Condensed matter physics</subject><subject>Electric currents</subject><subject>Electrical resistivity</subject><subject>Electrons</subject><subject>Fermi liquids</subject><subject>Fermions</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Heat</subject><subject>Helium</subject><subject>Humanities and Social Sciences</subject><subject>Hydrodynamics</subject><subject>Life Sciences</subject><subject>Liquid helium</subject><subject>Lorenz number</subject><subject>Metals</subject><subject>Momentum</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Temperature dependence</subject><subject>Thermal conductivity</subject><subject>Thermal diffusivity</subject><subject>Velocity</subject><subject>Viscosity</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9Uk1r3DAQNaWlCWn-QA_F0Et7cKtv2ZdCCG0SWCiU9CxkabzWYkupZC_431e7TtIkh-ogDTPvvZkRryjeY_QFI1p_TQwzIStEUEUQy3fzqjjNEa6wJPT1k_ikOE9ph_KhDa4Ze1ucUJoZiDSnxa_bHuKohzJCcmlyezctpfa27Bcbg128Hp1JZejKqYfSwhY8RD1BCQOYKQZfdsPsbOl8Zk1uDH55V7zp9JDg_P49K37_-H57eV1tfl7dXF5sKiMYmirgFOFatC3nlhiZB2Oadp20nFAglGvdEds2QlrJEEedNJ3JCWMw74Qmmp4VN6uuDXqn7qIbdVxU0E4dEyFulY6TMwMoqNu64VqIxuY-ljRgtKGcYtnmXrrJWt9Wrbu5HcEa8FPUwzPR5xXverUNeyVlw6hkWeDzKtC_oF1fbNQhhyjGiDdijzP2032zGP7MkCY1umRgGLSHMCdFmBRcYEEO0I8voLswR5-_9YginCDCM4qsKBNDShG6xwkwUge3qNUtKrtFHd2iDit_eLryI-XBGxlAV0DKJb-F-K_3f2T_AiEIykY</recordid><startdate>20210108</startdate><enddate>20210108</enddate><creator>Jaoui, Alexandre</creator><creator>Fauqué, Benoît</creator><creator>Behnia, Kamran</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2894-2054</orcidid><orcidid>https://orcid.org/0000-0002-3855-8371</orcidid><orcidid>https://orcid.org/0000-0001-8997-5645</orcidid></search><sort><creationdate>20210108</creationdate><title>Thermal resistivity and hydrodynamics of the degenerate electron fluid in antimony</title><author>Jaoui, Alexandre ; Fauqué, Benoît ; Behnia, Kamran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c640t-e530186bb55d2c78444a3ff7d523e235aaf2db967d74050f7cfc2dbcc15f6a2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/766/119/995</topic><topic>639/766/119/999</topic><topic>Antimony</topic><topic>Collision dynamics</topic><topic>Collision rates</topic><topic>Condensed matter physics</topic><topic>Electric currents</topic><topic>Electrical resistivity</topic><topic>Electrons</topic><topic>Fermi liquids</topic><topic>Fermions</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Heat</topic><topic>Helium</topic><topic>Humanities and Social Sciences</topic><topic>Hydrodynamics</topic><topic>Life Sciences</topic><topic>Liquid helium</topic><topic>Lorenz number</topic><topic>Metals</topic><topic>Momentum</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Temperature dependence</topic><topic>Thermal conductivity</topic><topic>Thermal diffusivity</topic><topic>Velocity</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jaoui, Alexandre</creatorcontrib><creatorcontrib>Fauqué, Benoît</creatorcontrib><creatorcontrib>Behnia, Kamran</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jaoui, Alexandre</au><au>Fauqué, Benoît</au><au>Behnia, Kamran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal resistivity and hydrodynamics of the degenerate electron fluid in antimony</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2021-01-08</date><risdate>2021</risdate><volume>12</volume><issue>1</issue><spage>195</spage><epage>195</epage><pages>195-195</pages><artnum>195</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Detecting hydrodynamic fingerprints in the flow of electrons in solids constitutes a dynamic field of investigation in contemporary condensed matter physics. Most attention has been focused on the regime near the degeneracy temperature when the thermal velocity can present a spatially modulated profile. Here, we report on the observation of a hydrodynamic feature in the flow of quasi-ballistic degenerate electrons in bulk antimony. By scrutinizing the temperature dependence of thermal and electric resistivities, we detect a size-dependent departure from the Wiedemann-Franz law, unexpected in the momentum-relaxing picture of transport. This observation finds a natural explanation in the hydrodynamic picture, where upon warming, momentum-conserving collisions reduce quadratically in temperature both viscosity and thermal diffusivity. This effect has been established theoretically and experimentally in normal-state liquid
3
He. The comparison of electrons in antimony and fermions in
3
He paves the way to a quantification of momentum-conserving fermion-fermion collision rate in different Fermi liquids.
Viscous fermionic flow appears in liquid helium but rarely appears in metallic solid. Here, Jaoui et al. report a T-square thermal resistivity due to momentum conserving electronic scattering in semi-metallic antimony, which is in agreement with the hydrodynamic scenario.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33420029</pmid><doi>10.1038/s41467-020-20420-9</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2894-2054</orcidid><orcidid>https://orcid.org/0000-0002-3855-8371</orcidid><orcidid>https://orcid.org/0000-0001-8997-5645</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2021-01, Vol.12 (1), p.195-195, Article 195 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_e8b895a669d844d29ecac35317b3e2a9 |
source | Publicly Available Content Database; Nature Journals Online; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/766/119/995 639/766/119/999 Antimony Collision dynamics Collision rates Condensed matter physics Electric currents Electrical resistivity Electrons Fermi liquids Fermions Fluid dynamics Fluid flow Fluid mechanics Heat Helium Humanities and Social Sciences Hydrodynamics Life Sciences Liquid helium Lorenz number Metals Momentum multidisciplinary Science Science (multidisciplinary) Temperature dependence Thermal conductivity Thermal diffusivity Velocity Viscosity |
title | Thermal resistivity and hydrodynamics of the degenerate electron fluid in antimony |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T20%3A12%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20resistivity%20and%20hydrodynamics%20of%20the%20degenerate%20electron%20fluid%20in%20antimony&rft.jtitle=Nature%20communications&rft.au=Jaoui,%20Alexandre&rft.date=2021-01-08&rft.volume=12&rft.issue=1&rft.spage=195&rft.epage=195&rft.pages=195-195&rft.artnum=195&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-020-20420-9&rft_dat=%3Cproquest_doaj_%3E2476252025%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c640t-e530186bb55d2c78444a3ff7d523e235aaf2db967d74050f7cfc2dbcc15f6a2a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2476252025&rft_id=info:pmid/33420029&rfr_iscdi=true |