Loading…
Exploring the effect of hierarchical porosity in BEA zeolite in Friedel-Crafts acylation of furan and benzofuran
Hierarchical BEA zeolite was prepared through desilication or desilication followed by acid treatment. The catalytic performance of BEA zeolite samples was evaluated using Friedel-Crafts acylations with two substrates of different molecular sizes, furan (5.7 Å) and benzofuran (6.9 Å), in the presenc...
Saved in:
Published in: | Catalysts 2022-09, Vol.12 (9), p.1-13 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Hierarchical BEA zeolite was prepared through desilication or desilication followed by acid treatment. The catalytic performance of BEA zeolite samples was evaluated using Friedel-Crafts acylations with two substrates of different molecular sizes, furan (5.7 Å) and benzofuran (6.9 Å), in the presence of acetic anhydride as acylating agent. The application of the simplified Langmuir Hinshelwood kinetic model showed that the size of the substrate leads to different catalytic activities, with improved rate constant and turnover frequency (TOF) solely in the presence of benzofuran for both desilicated and further acid treated samples. The mesopores developed during the zeolite treatments have an important role as transportation channels by reducing diffusion limitations. The application of Quantitative Structure–Property Relationships (QSPR) allowed the finding of the most relevant properties of the zeolite and substrate with impact on the catalytic parameters. |
---|---|
ISSN: | 2073-4344 2073-4344 |
DOI: | 10.3390/catal12091064 |