Loading…
Lighting-Induced Changes in Central and Peripheral Retinal Thickness and Shape after Short-Term Reading Tasks in Electronic Devices
Background: To assess retinal and optical changes associated with near vision reading for different lighting conditions in electronic screens. Methods: Twenty-four young healthy subjects participated in the study; an iPad and an Ebook were chosen as stimuli for 5 min of reading task with different l...
Saved in:
Published in: | Photonics 2022-12, Vol.9 (12), p.990 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Background: To assess retinal and optical changes associated with near vision reading for different lighting conditions in electronic screens. Methods: Twenty-four young healthy subjects participated in the study; an iPad and an Ebook were chosen as stimuli for 5 min of reading task with different lighting conditions. Central and peripheral retinal thicknesses in the macular ETDRS areas by optical coherence tomography were analyzed. Results: Significant differences were found between basal retinal thickness and retinal thickness after reading with iPad and high illumination, in the N6 (p = 0.021) and I6 (p = 0.049) areas, and low illumination (S3: p = 0.008, N3: p = 0.018, I3: p = 0.021, N6: p = 0.018 and I6: p = 0.020), being thinner after reading. The same trend was observed after reading with an Ebook and high lighting in the N3 (p = 0.037) and N6 (p = 0.028). For low lighting conditions, only retinal thinning was observed. After reading, retinal shape analysis revealed significant changes from computed basal eccentricity for high lighting conditions only. At the periphery, those differences in eccentricity values were statistically significant for both lighting conditions. Conclusions: Young people can recover visual quality after 5 min of reading tasks at different lighting levels on electronic devices, while peripheral retinal expansion remains altered, especially at low lighting levels. |
---|---|
ISSN: | 2304-6732 2304-6732 |
DOI: | 10.3390/photonics9120990 |