Loading…
Exact Solutions for Equations of Bose-Fermi Mixtures in One-Dimensional Optical Lattice
We present two new families of stationary solutions for equations of Bose-Fermi mixtures with an elliptic function potential with modulus k. We also discuss particular cases when the quasiperiodic solutions become periodic ones. In the limit of a sinusoidal potential (k ? 0) our solutions model a qu...
Saved in:
Published in: | Symmetry, integrability and geometry, methods and applications integrability and geometry, methods and applications, 2007-01, Vol.3, p.071 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c373t-b84909ff4a27c3ddb08446e22732e6dac4e2affa34e875a9d91df9d6658d74e73 |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | 071 |
container_title | Symmetry, integrability and geometry, methods and applications |
container_volume | 3 |
creator | Kostov, Nikolay A. |
description | We present two new families of stationary solutions for equations of Bose-Fermi mixtures with an elliptic function potential with modulus k. We also discuss particular cases when the quasiperiodic solutions become periodic ones. In the limit of a sinusoidal potential (k ? 0) our solutions model a quasi-one dimensional quantum degenerate Bose-Fermi mixture trapped in optical lattice. In the limit k ? 1 the solutions are expressed by hyperbolic function solutions (vector solitons). Thus we are able to obtain in an unified way quasi-periodic and periodic waves, and solitons. The precise conditions for existence of every class of solutions are derived. There are indications that such waves and localized objects may be observed in experiments with cold quantum degenerate gases. |
doi_str_mv | 10.3842/SIGMA.2007.071 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e8bc7052095643baa7ff83fcc2f4dbfa</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e8bc7052095643baa7ff83fcc2f4dbfa</doaj_id><sourcerecordid>2725686601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-b84909ff4a27c3ddb08446e22732e6dac4e2affa34e875a9d91df9d6658d74e73</originalsourceid><addsrcrecordid>eNpNUU1Lw0AUXETBWr16DnhOfNnd7CbHWttaaOmhisdlsx-Skmbb3QTqvzdtRDzNvMcw8x6D0GMKCckpft4uF-tJggF4Ajy9QqM0T7MYWFZc_-O36C6EHQBllMEIfc5OUrXR1tVdW7kmRNb5aHbs5DA5G724YOK58fsqWlentvMmRFUTbRoTv1Z704ReKOtoc2gr1eNKtj0x9-jGyjqYh18co4_57H36Fq82i-V0sooV4aSNy5wWUFhLJeaKaF1CTikzGHOCDdNSUYOltZJQk_NMFrpItS00Y1muOTWcjNFy8NVO7sTBV3vpv4WTlbgsnP8S0vcH1UaYvFQcMgxFxigppeTW5sQqhS3VZZ8xRk-D18G7Y2dCK3au8_1zQaRAgALjkPaqZFAp70Lwxv6lpiDORYhLEeJchOiLID9Ymnu5</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1030406701</pqid></control><display><type>article</type><title>Exact Solutions for Equations of Bose-Fermi Mixtures in One-Dimensional Optical Lattice</title><source>Publicly Available Content Database</source><creator>Kostov, Nikolay A.</creator><creatorcontrib>Kostov, Nikolay A.</creatorcontrib><description>We present two new families of stationary solutions for equations of Bose-Fermi mixtures with an elliptic function potential with modulus k. We also discuss particular cases when the quasiperiodic solutions become periodic ones. In the limit of a sinusoidal potential (k ? 0) our solutions model a quasi-one dimensional quantum degenerate Bose-Fermi mixture trapped in optical lattice. In the limit k ? 1 the solutions are expressed by hyperbolic function solutions (vector solitons). Thus we are able to obtain in an unified way quasi-periodic and periodic waves, and solitons. The precise conditions for existence of every class of solutions are derived. There are indications that such waves and localized objects may be observed in experiments with cold quantum degenerate gases.</description><identifier>ISSN: 1815-0659</identifier><identifier>EISSN: 1815-0659</identifier><identifier>DOI: 10.3842/SIGMA.2007.071</identifier><language>eng</language><publisher>Kiev: National Academy of Sciences of Ukraine</publisher><subject>Bose-Fermi mixtures ; one dimensional optical lattice</subject><ispartof>Symmetry, integrability and geometry, methods and applications, 2007-01, Vol.3, p.071</ispartof><rights>Copyright National Academy of Sciences of Ukraine 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-b84909ff4a27c3ddb08446e22732e6dac4e2affa34e875a9d91df9d6658d74e73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1030406701?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Kostov, Nikolay A.</creatorcontrib><title>Exact Solutions for Equations of Bose-Fermi Mixtures in One-Dimensional Optical Lattice</title><title>Symmetry, integrability and geometry, methods and applications</title><description>We present two new families of stationary solutions for equations of Bose-Fermi mixtures with an elliptic function potential with modulus k. We also discuss particular cases when the quasiperiodic solutions become periodic ones. In the limit of a sinusoidal potential (k ? 0) our solutions model a quasi-one dimensional quantum degenerate Bose-Fermi mixture trapped in optical lattice. In the limit k ? 1 the solutions are expressed by hyperbolic function solutions (vector solitons). Thus we are able to obtain in an unified way quasi-periodic and periodic waves, and solitons. The precise conditions for existence of every class of solutions are derived. There are indications that such waves and localized objects may be observed in experiments with cold quantum degenerate gases.</description><subject>Bose-Fermi mixtures</subject><subject>one dimensional optical lattice</subject><issn>1815-0659</issn><issn>1815-0659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1Lw0AUXETBWr16DnhOfNnd7CbHWttaaOmhisdlsx-Skmbb3QTqvzdtRDzNvMcw8x6D0GMKCckpft4uF-tJggF4Ajy9QqM0T7MYWFZc_-O36C6EHQBllMEIfc5OUrXR1tVdW7kmRNb5aHbs5DA5G724YOK58fsqWlentvMmRFUTbRoTv1Z704ReKOtoc2gr1eNKtj0x9-jGyjqYh18co4_57H36Fq82i-V0sooV4aSNy5wWUFhLJeaKaF1CTikzGHOCDdNSUYOltZJQk_NMFrpItS00Y1muOTWcjNFy8NVO7sTBV3vpv4WTlbgsnP8S0vcH1UaYvFQcMgxFxigppeTW5sQqhS3VZZ8xRk-D18G7Y2dCK3au8_1zQaRAgALjkPaqZFAp70Lwxv6lpiDORYhLEeJchOiLID9Ymnu5</recordid><startdate>20070101</startdate><enddate>20070101</enddate><creator>Kostov, Nikolay A.</creator><general>National Academy of Sciences of Ukraine</general><general>National Academy of Science of Ukraine</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BYOGL</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope></search><sort><creationdate>20070101</creationdate><title>Exact Solutions for Equations of Bose-Fermi Mixtures in One-Dimensional Optical Lattice</title><author>Kostov, Nikolay A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-b84909ff4a27c3ddb08446e22732e6dac4e2affa34e875a9d91df9d6658d74e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Bose-Fermi mixtures</topic><topic>one dimensional optical lattice</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kostov, Nikolay A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>East Europe, Central Europe Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Symmetry, integrability and geometry, methods and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kostov, Nikolay A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exact Solutions for Equations of Bose-Fermi Mixtures in One-Dimensional Optical Lattice</atitle><jtitle>Symmetry, integrability and geometry, methods and applications</jtitle><date>2007-01-01</date><risdate>2007</risdate><volume>3</volume><spage>071</spage><pages>071-</pages><issn>1815-0659</issn><eissn>1815-0659</eissn><abstract>We present two new families of stationary solutions for equations of Bose-Fermi mixtures with an elliptic function potential with modulus k. We also discuss particular cases when the quasiperiodic solutions become periodic ones. In the limit of a sinusoidal potential (k ? 0) our solutions model a quasi-one dimensional quantum degenerate Bose-Fermi mixture trapped in optical lattice. In the limit k ? 1 the solutions are expressed by hyperbolic function solutions (vector solitons). Thus we are able to obtain in an unified way quasi-periodic and periodic waves, and solitons. The precise conditions for existence of every class of solutions are derived. There are indications that such waves and localized objects may be observed in experiments with cold quantum degenerate gases.</abstract><cop>Kiev</cop><pub>National Academy of Sciences of Ukraine</pub><doi>10.3842/SIGMA.2007.071</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1815-0659 |
ispartof | Symmetry, integrability and geometry, methods and applications, 2007-01, Vol.3, p.071 |
issn | 1815-0659 1815-0659 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_e8bc7052095643baa7ff83fcc2f4dbfa |
source | Publicly Available Content Database |
subjects | Bose-Fermi mixtures one dimensional optical lattice |
title | Exact Solutions for Equations of Bose-Fermi Mixtures in One-Dimensional Optical Lattice |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A28%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exact%20Solutions%20for%20Equations%20of%20Bose-Fermi%20Mixtures%20in%20One-Dimensional%20Optical%20Lattice&rft.jtitle=Symmetry,%20integrability%20and%20geometry,%20methods%20and%20applications&rft.au=Kostov,%20Nikolay%20A.&rft.date=2007-01-01&rft.volume=3&rft.spage=071&rft.pages=071-&rft.issn=1815-0659&rft.eissn=1815-0659&rft_id=info:doi/10.3842/SIGMA.2007.071&rft_dat=%3Cproquest_doaj_%3E2725686601%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c373t-b84909ff4a27c3ddb08446e22732e6dac4e2affa34e875a9d91df9d6658d74e73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1030406701&rft_id=info:pmid/&rfr_iscdi=true |