Loading…

Sample Selection Models in R : Package sampleSelection

This paper describes the implementation of Heckman-type sample selection models in R. We discuss the sample selection problem as well as the Heckman solution to it, and argue that although modern econometrics has non- and semiparametric estimation methods in its toolbox, Heckman models are an integr...

Full description

Saved in:
Bibliographic Details
Published in:Journal of statistical software 2008, Vol.27 (7)
Main Authors: Toomet, Ott, Henningsen, Arne
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c303t-36e3638a8573b748899e384cc9f4302a620e9912182bcb1f70e81ca15a8ea8503
cites
container_end_page
container_issue 7
container_start_page
container_title Journal of statistical software
container_volume 27
creator Toomet, Ott
Henningsen, Arne
description This paper describes the implementation of Heckman-type sample selection models in R. We discuss the sample selection problem as well as the Heckman solution to it, and argue that although modern econometrics has non- and semiparametric estimation methods in its toolbox, Heckman models are an integral part of the modern applied analysis and econometrics syllabus. We describe the implementation of these models in the package sampleSelection and illustrate the usage of the package on several simulation and real data examples. Our examples demonstrate the effect of exclusion restrictions, identification at infinity and misspecification. We argue that the package can be used both in applied research and teaching.
doi_str_mv 10.18637/jss.v027.i07
format article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e8befe0786b84f568972d905ec8ed82a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e8befe0786b84f568972d905ec8ed82a</doaj_id><sourcerecordid>oai_doaj_org_article_e8befe0786b84f568972d905ec8ed82a</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-36e3638a8573b748899e384cc9f4302a620e9912182bcb1f70e81ca15a8ea8503</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKtH7_kDWyfJbjLxJsWPQkWxeg6z2dmyddstmyL4711bKZ7mZXjf5_AIca1gotAad7NKafIF2k0acCdipIocM2ctnP7L5-IipRWAhtwXI2EXtN62LBfcctw13UY-dxW3STYb-SZv5SvFT1qyTPvasXUpzmpqE1_93bH4eLh_nz5l85fH2fRunkUDZpcZy8YaJCycKV2O6D0bzGP0dW5Ak9XA3iutUJexVLUDRhVJFYQ8jMCMxezArTpahW3frKn_Dh01Yf_o-mWgftfElgNjyTWDQ1tiXhcWvdOVh4IjcoWaBlZ2YMW-S6nn-shTEPYCwyAw_AoMg0DzA9dOYsM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Sample Selection Models in R : Package sampleSelection</title><source>DOAJ Directory of Open Access Journals</source><creator>Toomet, Ott ; Henningsen, Arne</creator><creatorcontrib>Toomet, Ott ; Henningsen, Arne</creatorcontrib><description>This paper describes the implementation of Heckman-type sample selection models in R. We discuss the sample selection problem as well as the Heckman solution to it, and argue that although modern econometrics has non- and semiparametric estimation methods in its toolbox, Heckman models are an integral part of the modern applied analysis and econometrics syllabus. We describe the implementation of these models in the package sampleSelection and illustrate the usage of the package on several simulation and real data examples. Our examples demonstrate the effect of exclusion restrictions, identification at infinity and misspecification. We argue that the package can be used both in applied research and teaching.</description><identifier>ISSN: 1548-7660</identifier><identifier>EISSN: 1548-7660</identifier><identifier>DOI: 10.18637/jss.v027.i07</identifier><language>eng</language><publisher>Foundation for Open Access Statistics</publisher><subject>econometrics ; Heckman selection models ; sample selection models</subject><ispartof>Journal of statistical software, 2008, Vol.27 (7)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c303t-36e3638a8573b748899e384cc9f4302a620e9912182bcb1f70e81ca15a8ea8503</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2102,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Toomet, Ott</creatorcontrib><creatorcontrib>Henningsen, Arne</creatorcontrib><title>Sample Selection Models in R : Package sampleSelection</title><title>Journal of statistical software</title><description>This paper describes the implementation of Heckman-type sample selection models in R. We discuss the sample selection problem as well as the Heckman solution to it, and argue that although modern econometrics has non- and semiparametric estimation methods in its toolbox, Heckman models are an integral part of the modern applied analysis and econometrics syllabus. We describe the implementation of these models in the package sampleSelection and illustrate the usage of the package on several simulation and real data examples. Our examples demonstrate the effect of exclusion restrictions, identification at infinity and misspecification. We argue that the package can be used both in applied research and teaching.</description><subject>econometrics</subject><subject>Heckman selection models</subject><subject>sample selection models</subject><issn>1548-7660</issn><issn>1548-7660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkE1LAzEQhoMoWKtH7_kDWyfJbjLxJsWPQkWxeg6z2dmyddstmyL4711bKZ7mZXjf5_AIca1gotAad7NKafIF2k0acCdipIocM2ctnP7L5-IipRWAhtwXI2EXtN62LBfcctw13UY-dxW3STYb-SZv5SvFT1qyTPvasXUpzmpqE1_93bH4eLh_nz5l85fH2fRunkUDZpcZy8YaJCycKV2O6D0bzGP0dW5Ak9XA3iutUJexVLUDRhVJFYQ8jMCMxezArTpahW3frKn_Dh01Yf_o-mWgftfElgNjyTWDQ1tiXhcWvdOVh4IjcoWaBlZ2YMW-S6nn-shTEPYCwyAw_AoMg0DzA9dOYsM</recordid><startdate>2008</startdate><enddate>2008</enddate><creator>Toomet, Ott</creator><creator>Henningsen, Arne</creator><general>Foundation for Open Access Statistics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>2008</creationdate><title>Sample Selection Models in R : Package sampleSelection</title><author>Toomet, Ott ; Henningsen, Arne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-36e3638a8573b748899e384cc9f4302a620e9912182bcb1f70e81ca15a8ea8503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>econometrics</topic><topic>Heckman selection models</topic><topic>sample selection models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Toomet, Ott</creatorcontrib><creatorcontrib>Henningsen, Arne</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of statistical software</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Toomet, Ott</au><au>Henningsen, Arne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sample Selection Models in R : Package sampleSelection</atitle><jtitle>Journal of statistical software</jtitle><date>2008</date><risdate>2008</risdate><volume>27</volume><issue>7</issue><issn>1548-7660</issn><eissn>1548-7660</eissn><abstract>This paper describes the implementation of Heckman-type sample selection models in R. We discuss the sample selection problem as well as the Heckman solution to it, and argue that although modern econometrics has non- and semiparametric estimation methods in its toolbox, Heckman models are an integral part of the modern applied analysis and econometrics syllabus. We describe the implementation of these models in the package sampleSelection and illustrate the usage of the package on several simulation and real data examples. Our examples demonstrate the effect of exclusion restrictions, identification at infinity and misspecification. We argue that the package can be used both in applied research and teaching.</abstract><pub>Foundation for Open Access Statistics</pub><doi>10.18637/jss.v027.i07</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1548-7660
ispartof Journal of statistical software, 2008, Vol.27 (7)
issn 1548-7660
1548-7660
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_e8befe0786b84f568972d905ec8ed82a
source DOAJ Directory of Open Access Journals
subjects econometrics
Heckman selection models
sample selection models
title Sample Selection Models in R : Package sampleSelection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A13%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sample%20Selection%20Models%20in%20R%20:%20Package%20sampleSelection&rft.jtitle=Journal%20of%20statistical%20software&rft.au=Toomet,%20Ott&rft.date=2008&rft.volume=27&rft.issue=7&rft.issn=1548-7660&rft.eissn=1548-7660&rft_id=info:doi/10.18637/jss.v027.i07&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_e8befe0786b84f568972d905ec8ed82a%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c303t-36e3638a8573b748899e384cc9f4302a620e9912182bcb1f70e81ca15a8ea8503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true