Loading…
Sample Selection Models in R : Package sampleSelection
This paper describes the implementation of Heckman-type sample selection models in R. We discuss the sample selection problem as well as the Heckman solution to it, and argue that although modern econometrics has non- and semiparametric estimation methods in its toolbox, Heckman models are an integr...
Saved in:
Published in: | Journal of statistical software 2008, Vol.27 (7) |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c303t-36e3638a8573b748899e384cc9f4302a620e9912182bcb1f70e81ca15a8ea8503 |
---|---|
cites | |
container_end_page | |
container_issue | 7 |
container_start_page | |
container_title | Journal of statistical software |
container_volume | 27 |
creator | Toomet, Ott Henningsen, Arne |
description | This paper describes the implementation of Heckman-type sample selection models in R. We discuss the sample selection problem as well as the Heckman solution to it, and argue that although modern econometrics has non- and semiparametric estimation methods in its toolbox, Heckman models are an integral part of the modern applied analysis and econometrics syllabus. We describe the implementation of these models in the package sampleSelection and illustrate the usage of the package on several simulation and real data examples. Our examples demonstrate the effect of exclusion restrictions, identification at infinity and misspecification. We argue that the package can be used both in applied research and teaching. |
doi_str_mv | 10.18637/jss.v027.i07 |
format | article |
fullrecord | <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e8befe0786b84f568972d905ec8ed82a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e8befe0786b84f568972d905ec8ed82a</doaj_id><sourcerecordid>oai_doaj_org_article_e8befe0786b84f568972d905ec8ed82a</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-36e3638a8573b748899e384cc9f4302a620e9912182bcb1f70e81ca15a8ea8503</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKtH7_kDWyfJbjLxJsWPQkWxeg6z2dmyddstmyL4711bKZ7mZXjf5_AIca1gotAad7NKafIF2k0acCdipIocM2ctnP7L5-IipRWAhtwXI2EXtN62LBfcctw13UY-dxW3STYb-SZv5SvFT1qyTPvasXUpzmpqE1_93bH4eLh_nz5l85fH2fRunkUDZpcZy8YaJCycKV2O6D0bzGP0dW5Ak9XA3iutUJexVLUDRhVJFYQ8jMCMxezArTpahW3frKn_Dh01Yf_o-mWgftfElgNjyTWDQ1tiXhcWvdOVh4IjcoWaBlZ2YMW-S6nn-shTEPYCwyAw_AoMg0DzA9dOYsM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Sample Selection Models in R : Package sampleSelection</title><source>DOAJ Directory of Open Access Journals</source><creator>Toomet, Ott ; Henningsen, Arne</creator><creatorcontrib>Toomet, Ott ; Henningsen, Arne</creatorcontrib><description>This paper describes the implementation of Heckman-type sample selection models in R. We discuss the sample selection problem as well as the Heckman solution to it, and argue that although modern econometrics has non- and semiparametric estimation methods in its toolbox, Heckman models are an integral part of the modern applied analysis and econometrics syllabus. We describe the implementation of these models in the package sampleSelection and illustrate the usage of the package on several simulation and real data examples. Our examples demonstrate the effect of exclusion restrictions, identification at infinity and misspecification. We argue that the package can be used both in applied research and teaching.</description><identifier>ISSN: 1548-7660</identifier><identifier>EISSN: 1548-7660</identifier><identifier>DOI: 10.18637/jss.v027.i07</identifier><language>eng</language><publisher>Foundation for Open Access Statistics</publisher><subject>econometrics ; Heckman selection models ; sample selection models</subject><ispartof>Journal of statistical software, 2008, Vol.27 (7)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c303t-36e3638a8573b748899e384cc9f4302a620e9912182bcb1f70e81ca15a8ea8503</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2102,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Toomet, Ott</creatorcontrib><creatorcontrib>Henningsen, Arne</creatorcontrib><title>Sample Selection Models in R : Package sampleSelection</title><title>Journal of statistical software</title><description>This paper describes the implementation of Heckman-type sample selection models in R. We discuss the sample selection problem as well as the Heckman solution to it, and argue that although modern econometrics has non- and semiparametric estimation methods in its toolbox, Heckman models are an integral part of the modern applied analysis and econometrics syllabus. We describe the implementation of these models in the package sampleSelection and illustrate the usage of the package on several simulation and real data examples. Our examples demonstrate the effect of exclusion restrictions, identification at infinity and misspecification. We argue that the package can be used both in applied research and teaching.</description><subject>econometrics</subject><subject>Heckman selection models</subject><subject>sample selection models</subject><issn>1548-7660</issn><issn>1548-7660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkE1LAzEQhoMoWKtH7_kDWyfJbjLxJsWPQkWxeg6z2dmyddstmyL4711bKZ7mZXjf5_AIca1gotAad7NKafIF2k0acCdipIocM2ctnP7L5-IipRWAhtwXI2EXtN62LBfcctw13UY-dxW3STYb-SZv5SvFT1qyTPvasXUpzmpqE1_93bH4eLh_nz5l85fH2fRunkUDZpcZy8YaJCycKV2O6D0bzGP0dW5Ak9XA3iutUJexVLUDRhVJFYQ8jMCMxezArTpahW3frKn_Dh01Yf_o-mWgftfElgNjyTWDQ1tiXhcWvdOVh4IjcoWaBlZ2YMW-S6nn-shTEPYCwyAw_AoMg0DzA9dOYsM</recordid><startdate>2008</startdate><enddate>2008</enddate><creator>Toomet, Ott</creator><creator>Henningsen, Arne</creator><general>Foundation for Open Access Statistics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>2008</creationdate><title>Sample Selection Models in R : Package sampleSelection</title><author>Toomet, Ott ; Henningsen, Arne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-36e3638a8573b748899e384cc9f4302a620e9912182bcb1f70e81ca15a8ea8503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>econometrics</topic><topic>Heckman selection models</topic><topic>sample selection models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Toomet, Ott</creatorcontrib><creatorcontrib>Henningsen, Arne</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of statistical software</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Toomet, Ott</au><au>Henningsen, Arne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sample Selection Models in R : Package sampleSelection</atitle><jtitle>Journal of statistical software</jtitle><date>2008</date><risdate>2008</risdate><volume>27</volume><issue>7</issue><issn>1548-7660</issn><eissn>1548-7660</eissn><abstract>This paper describes the implementation of Heckman-type sample selection models in R. We discuss the sample selection problem as well as the Heckman solution to it, and argue that although modern econometrics has non- and semiparametric estimation methods in its toolbox, Heckman models are an integral part of the modern applied analysis and econometrics syllabus. We describe the implementation of these models in the package sampleSelection and illustrate the usage of the package on several simulation and real data examples. Our examples demonstrate the effect of exclusion restrictions, identification at infinity and misspecification. We argue that the package can be used both in applied research and teaching.</abstract><pub>Foundation for Open Access Statistics</pub><doi>10.18637/jss.v027.i07</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1548-7660 |
ispartof | Journal of statistical software, 2008, Vol.27 (7) |
issn | 1548-7660 1548-7660 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_e8befe0786b84f568972d905ec8ed82a |
source | DOAJ Directory of Open Access Journals |
subjects | econometrics Heckman selection models sample selection models |
title | Sample Selection Models in R : Package sampleSelection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A13%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sample%20Selection%20Models%20in%20R%20:%20Package%20sampleSelection&rft.jtitle=Journal%20of%20statistical%20software&rft.au=Toomet,%20Ott&rft.date=2008&rft.volume=27&rft.issue=7&rft.issn=1548-7660&rft.eissn=1548-7660&rft_id=info:doi/10.18637/jss.v027.i07&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_e8befe0786b84f568972d905ec8ed82a%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c303t-36e3638a8573b748899e384cc9f4302a620e9912182bcb1f70e81ca15a8ea8503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |