Loading…
Optimization of Carvacrol Nanoemulsion for the Incorporation in Pectin Membranes: Influence on Their Load Capacity, Microstructure and Antibacterial Properties
Interest in developing novel wound dressings with antibacterial properties elaborated from natural sources continues to grow. In this study, a Tween-80 (T80)-stabilized carvacrol (CAR) emulsion was incorporated into pectin (PEC) membranes at 0 (control), 0.25, 0.50, and 1.00% (v/v). Membranes were o...
Saved in:
Published in: | Materials research (São Carlos, São Paulo, Brazil) São Paulo, Brazil), 2022-01, Vol.25, p.1 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Interest in developing novel wound dressings with antibacterial properties elaborated from natural sources continues to grow. In this study, a Tween-80 (T80)-stabilized carvacrol (CAR) emulsion was incorporated into pectin (PEC) membranes at 0 (control), 0.25, 0.50, and 1.00% (v/v). Membranes were obtained by the dry-casting method, characterized by scanning electron microscopy, infrared spectroscopy, and CAR retention (HPLC), and tested for antibacterial activity. The retention percentage of CAR in the membranes ranged from 9.1-13.9%. Infrared spectra analysis indicated changes in the hydrogen bonds of the membranes that suggest an interaction between the polymer matrix and the CAR:T80 emulsion. Microstructural analysis of the membranes showed the presence of hole-like features on the surface (≈ 4-6 µm diameter) that indicate entrapment of the micelles in the matrix (microcapsules). The PEC-CAR membranes exhibited antibacterial activity against Escherichia coli and Staphylococcus aureus, two pathogens commonly associated with wounds and intra-hospital infections. |
---|---|
ISSN: | 1516-1439 1980-5373 1980-5373 |
DOI: | 10.1590/1980-5373-mr-2021-0534 |