Loading…
Enhanced Proliferation and Differentiation of Human Mesenchymal Stem Cell-laden Recycled Fish Gelatin/Strontium Substitution Calcium Silicate 3D Scaffolds
Cell-encapsulated bioscaffold is a promising and novel method to allow fabrication of live functional organs for tissue engineering and regenerative medicine. However, traditional fabrication methods of 3D scaffolds and cell-laden hydrogels still face many difficulties and challenges. This study use...
Saved in:
Published in: | Applied sciences 2020-03, Vol.10 (6), p.2168 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Cell-encapsulated bioscaffold is a promising and novel method to allow fabrication of live functional organs for tissue engineering and regenerative medicine. However, traditional fabrication methods of 3D scaffolds and cell-laden hydrogels still face many difficulties and challenges. This study uses a newer 3D fabrication technique and the concept of recycling of an unutilized resource to fabricate a novel scaffold for bone tissue engineering. In this study, fish-extracted gelatin was incorporated with bioactive ceramic for bone tissue engineering, and with this we successfully fabricated a novel fish gelatin methacrylate (FG) polymer hydrogel mixed with strontium-doped calcium silicate powder (FGSr) 3D scaffold via photo-crosslinking. Our results indicated that the tensile strength of FGSr was almost 2.5-fold higher as compared to FG thus making it a better candidate for future clinical applications. The in-vitro assays illustrated that the FGSr scaffolds showed good biocompatibility with human Wharton jelly-derived mesenchymal stem cells (WJMSC), as well as enhancing the osteogenesis differentiation of WJMSC. The WJMSC-laden FGSr 3D scaffolds expressed a higher degree of alkaline phosphatase activity than those on cell-laden FG 3D scaffolds and this result was further proven with the subsequent calcium deposition results. Therefore, these results showed that 3D-printed cell-laden FGSr scaffolds had enhanced mechanical property and osteogenic-related behavior that made for a more suitable candidate for future clinical applications. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app10062168 |