Loading…
Development of an extrusion-based 3D-printing strategy for clustering of human neural progenitor cells
3D bioprinting offers a simplified solution for the engineering of complex tissue parts for in-vitro drug discovery or, in-vivo implantation. However, significant amount of challenges exist in 3D bioprinting of neural tissues, as these are sensitive cell types to handle via extrusion bioprinting tec...
Saved in:
Published in: | Heliyon 2022-12, Vol.8 (12), p.e12250, Article e12250 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c533t-59e07c9901940c74559eb603934f5b375b919ff4572cb0707b3748c1e4209b1a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c533t-59e07c9901940c74559eb603934f5b375b919ff4572cb0707b3748c1e4209b1a3 |
container_end_page | |
container_issue | 12 |
container_start_page | e12250 |
container_title | Heliyon |
container_volume | 8 |
creator | Bilkic, Ines Sotelo, Diana Anujarerat, Stephanie Ortiz, Nickolas R. Alonzo, Matthew El Khoury, Raven Loyola, Carla C. Joddar, Binata |
description | 3D bioprinting offers a simplified solution for the engineering of complex tissue parts for in-vitro drug discovery or, in-vivo implantation. However, significant amount of challenges exist in 3D bioprinting of neural tissues, as these are sensitive cell types to handle via extrusion bioprinting techniques. We assessed the feasibility of bioprinting human neural progenitor cells (NPCs) in 3D hydrogel lattices using a fibrinogen-alginate-chitosan bioink, previously optimized for neural-cell growth, and subsequently modified for structural support during extrusion printing, in this study. The original bioink used in this study was made by adding optimized amounts of high- and medium-viscosity alginate to the fibrinogen-chitosan-based bioink and making it extrudable under shear pressure. The mechanically robust 3D constructs promoted NPC cluster formation and maintained their morphology and viability during the entire culture period. This strategy may be useful for co-culturing of NPCs along with other cell types such as cardiac, vascular, and other cells during 3D bioprinting.
[Display omitted]
Neural tissue engineering; Biofabrication; Bioinks; Neural progenitor cells; Process optimization; Rheology; Scanning electron microscopy; Image analysis; Immunohistochemistry; Bioprinting. |
doi_str_mv | 10.1016/j.heliyon.2022.e12250 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e90eac908ddd4ff39519734a9a0076db</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2405844022035381</els_id><doaj_id>oai_doaj_org_article_e90eac908ddd4ff39519734a9a0076db</doaj_id><sourcerecordid>2765775049</sourcerecordid><originalsourceid>FETCH-LOGICAL-c533t-59e07c9901940c74559eb603934f5b375b919ff4572cb0707b3748c1e4209b1a3</originalsourceid><addsrcrecordid>eNqFUU1v1DAUjBCIVqU_AZQjlyzPX3F8AaGWj0qVuMDZcpyXrFdZe7GdVfff42WXqj1xsjWemfc8U1VvCawIkPbDZrXG2R2CX1GgdIWEUgEvqkvKQTQd5_Dyyf2iuk5pAwBEdK2S7HV1wdqWtZTCZTXe4h7nsNuiz3UYa-NrfMhxSS74pjcJh5rdNrvofHZ-qlOOJuN0qMcQazsvKWM84kW5XrZF7HGJZq53MUzoXT6ycJ7Tm-rVaOaE1-fzqvr19cvPm-_N_Y9vdzef7xsrGMuNUAjSKgVEcbCSiwL0LTDF-Ch6JkWviBpHLiS1PUiQBeOdJcgpqJ4YdlXdnXyHYDa6rL018aCDcfovEOKkTczOzqhRARqroBuGgY8jU4KUcLhRBkC2Q1-8Pp68dku_xcGWhMrXnpk-f_Furaew16pjQKQsBu_PBjH8XjBlvXXpGIfxGJakqWyFlAK4KlRxotoYUoo4Po4hoI-V640-V66PletT5UX37umOj6p_BRfCpxMBS-p7h1En69BbHFxEm0ss7j8j_gABTsE5</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2765775049</pqid></control><display><type>article</type><title>Development of an extrusion-based 3D-printing strategy for clustering of human neural progenitor cells</title><source>PubMed Central Free</source><source>ScienceDirect - Connect here FIRST to enable access</source><creator>Bilkic, Ines ; Sotelo, Diana ; Anujarerat, Stephanie ; Ortiz, Nickolas R. ; Alonzo, Matthew ; El Khoury, Raven ; Loyola, Carla C. ; Joddar, Binata</creator><creatorcontrib>Bilkic, Ines ; Sotelo, Diana ; Anujarerat, Stephanie ; Ortiz, Nickolas R. ; Alonzo, Matthew ; El Khoury, Raven ; Loyola, Carla C. ; Joddar, Binata</creatorcontrib><description>3D bioprinting offers a simplified solution for the engineering of complex tissue parts for in-vitro drug discovery or, in-vivo implantation. However, significant amount of challenges exist in 3D bioprinting of neural tissues, as these are sensitive cell types to handle via extrusion bioprinting techniques. We assessed the feasibility of bioprinting human neural progenitor cells (NPCs) in 3D hydrogel lattices using a fibrinogen-alginate-chitosan bioink, previously optimized for neural-cell growth, and subsequently modified for structural support during extrusion printing, in this study. The original bioink used in this study was made by adding optimized amounts of high- and medium-viscosity alginate to the fibrinogen-chitosan-based bioink and making it extrudable under shear pressure. The mechanically robust 3D constructs promoted NPC cluster formation and maintained their morphology and viability during the entire culture period. This strategy may be useful for co-culturing of NPCs along with other cell types such as cardiac, vascular, and other cells during 3D bioprinting.
[Display omitted]
Neural tissue engineering; Biofabrication; Bioinks; Neural progenitor cells; Process optimization; Rheology; Scanning electron microscopy; Image analysis; Immunohistochemistry; Bioprinting.</description><identifier>ISSN: 2405-8440</identifier><identifier>EISSN: 2405-8440</identifier><identifier>DOI: 10.1016/j.heliyon.2022.e12250</identifier><identifier>PMID: 36636220</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Biofabrication ; Bioinks ; Bioprinting ; Image analysis ; Immunohistochemistry ; Neural progenitor cells ; Neural tissue engineering ; Process optimization ; Rheology ; Scanning electron microscopy</subject><ispartof>Heliyon, 2022-12, Vol.8 (12), p.e12250, Article e12250</ispartof><rights>2022 The Author(s)</rights><rights>2022 The Author(s).</rights><rights>2022 The Author(s) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c533t-59e07c9901940c74559eb603934f5b375b919ff4572cb0707b3748c1e4209b1a3</citedby><cites>FETCH-LOGICAL-c533t-59e07c9901940c74559eb603934f5b375b919ff4572cb0707b3748c1e4209b1a3</cites><orcidid>0000-0002-5152-9882 ; 0000-0002-9157-3140 ; 0000-0001-8890-7587 ; 0000-0002-3776-0842</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9830177/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2405844022035381$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36636220$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bilkic, Ines</creatorcontrib><creatorcontrib>Sotelo, Diana</creatorcontrib><creatorcontrib>Anujarerat, Stephanie</creatorcontrib><creatorcontrib>Ortiz, Nickolas R.</creatorcontrib><creatorcontrib>Alonzo, Matthew</creatorcontrib><creatorcontrib>El Khoury, Raven</creatorcontrib><creatorcontrib>Loyola, Carla C.</creatorcontrib><creatorcontrib>Joddar, Binata</creatorcontrib><title>Development of an extrusion-based 3D-printing strategy for clustering of human neural progenitor cells</title><title>Heliyon</title><addtitle>Heliyon</addtitle><description>3D bioprinting offers a simplified solution for the engineering of complex tissue parts for in-vitro drug discovery or, in-vivo implantation. However, significant amount of challenges exist in 3D bioprinting of neural tissues, as these are sensitive cell types to handle via extrusion bioprinting techniques. We assessed the feasibility of bioprinting human neural progenitor cells (NPCs) in 3D hydrogel lattices using a fibrinogen-alginate-chitosan bioink, previously optimized for neural-cell growth, and subsequently modified for structural support during extrusion printing, in this study. The original bioink used in this study was made by adding optimized amounts of high- and medium-viscosity alginate to the fibrinogen-chitosan-based bioink and making it extrudable under shear pressure. The mechanically robust 3D constructs promoted NPC cluster formation and maintained their morphology and viability during the entire culture period. This strategy may be useful for co-culturing of NPCs along with other cell types such as cardiac, vascular, and other cells during 3D bioprinting.
[Display omitted]
Neural tissue engineering; Biofabrication; Bioinks; Neural progenitor cells; Process optimization; Rheology; Scanning electron microscopy; Image analysis; Immunohistochemistry; Bioprinting.</description><subject>Biofabrication</subject><subject>Bioinks</subject><subject>Bioprinting</subject><subject>Image analysis</subject><subject>Immunohistochemistry</subject><subject>Neural progenitor cells</subject><subject>Neural tissue engineering</subject><subject>Process optimization</subject><subject>Rheology</subject><subject>Scanning electron microscopy</subject><issn>2405-8440</issn><issn>2405-8440</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqFUU1v1DAUjBCIVqU_AZQjlyzPX3F8AaGWj0qVuMDZcpyXrFdZe7GdVfff42WXqj1xsjWemfc8U1VvCawIkPbDZrXG2R2CX1GgdIWEUgEvqkvKQTQd5_Dyyf2iuk5pAwBEdK2S7HV1wdqWtZTCZTXe4h7nsNuiz3UYa-NrfMhxSS74pjcJh5rdNrvofHZ-qlOOJuN0qMcQazsvKWM84kW5XrZF7HGJZq53MUzoXT6ycJ7Tm-rVaOaE1-fzqvr19cvPm-_N_Y9vdzef7xsrGMuNUAjSKgVEcbCSiwL0LTDF-Ch6JkWviBpHLiS1PUiQBeOdJcgpqJ4YdlXdnXyHYDa6rL018aCDcfovEOKkTczOzqhRARqroBuGgY8jU4KUcLhRBkC2Q1-8Pp68dku_xcGWhMrXnpk-f_Furaew16pjQKQsBu_PBjH8XjBlvXXpGIfxGJakqWyFlAK4KlRxotoYUoo4Po4hoI-V640-V66PletT5UX37umOj6p_BRfCpxMBS-p7h1En69BbHFxEm0ss7j8j_gABTsE5</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Bilkic, Ines</creator><creator>Sotelo, Diana</creator><creator>Anujarerat, Stephanie</creator><creator>Ortiz, Nickolas R.</creator><creator>Alonzo, Matthew</creator><creator>El Khoury, Raven</creator><creator>Loyola, Carla C.</creator><creator>Joddar, Binata</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5152-9882</orcidid><orcidid>https://orcid.org/0000-0002-9157-3140</orcidid><orcidid>https://orcid.org/0000-0001-8890-7587</orcidid><orcidid>https://orcid.org/0000-0002-3776-0842</orcidid></search><sort><creationdate>20221201</creationdate><title>Development of an extrusion-based 3D-printing strategy for clustering of human neural progenitor cells</title><author>Bilkic, Ines ; Sotelo, Diana ; Anujarerat, Stephanie ; Ortiz, Nickolas R. ; Alonzo, Matthew ; El Khoury, Raven ; Loyola, Carla C. ; Joddar, Binata</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c533t-59e07c9901940c74559eb603934f5b375b919ff4572cb0707b3748c1e4209b1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biofabrication</topic><topic>Bioinks</topic><topic>Bioprinting</topic><topic>Image analysis</topic><topic>Immunohistochemistry</topic><topic>Neural progenitor cells</topic><topic>Neural tissue engineering</topic><topic>Process optimization</topic><topic>Rheology</topic><topic>Scanning electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bilkic, Ines</creatorcontrib><creatorcontrib>Sotelo, Diana</creatorcontrib><creatorcontrib>Anujarerat, Stephanie</creatorcontrib><creatorcontrib>Ortiz, Nickolas R.</creatorcontrib><creatorcontrib>Alonzo, Matthew</creatorcontrib><creatorcontrib>El Khoury, Raven</creatorcontrib><creatorcontrib>Loyola, Carla C.</creatorcontrib><creatorcontrib>Joddar, Binata</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Heliyon</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bilkic, Ines</au><au>Sotelo, Diana</au><au>Anujarerat, Stephanie</au><au>Ortiz, Nickolas R.</au><au>Alonzo, Matthew</au><au>El Khoury, Raven</au><au>Loyola, Carla C.</au><au>Joddar, Binata</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of an extrusion-based 3D-printing strategy for clustering of human neural progenitor cells</atitle><jtitle>Heliyon</jtitle><addtitle>Heliyon</addtitle><date>2022-12-01</date><risdate>2022</risdate><volume>8</volume><issue>12</issue><spage>e12250</spage><pages>e12250-</pages><artnum>e12250</artnum><issn>2405-8440</issn><eissn>2405-8440</eissn><abstract>3D bioprinting offers a simplified solution for the engineering of complex tissue parts for in-vitro drug discovery or, in-vivo implantation. However, significant amount of challenges exist in 3D bioprinting of neural tissues, as these are sensitive cell types to handle via extrusion bioprinting techniques. We assessed the feasibility of bioprinting human neural progenitor cells (NPCs) in 3D hydrogel lattices using a fibrinogen-alginate-chitosan bioink, previously optimized for neural-cell growth, and subsequently modified for structural support during extrusion printing, in this study. The original bioink used in this study was made by adding optimized amounts of high- and medium-viscosity alginate to the fibrinogen-chitosan-based bioink and making it extrudable under shear pressure. The mechanically robust 3D constructs promoted NPC cluster formation and maintained their morphology and viability during the entire culture period. This strategy may be useful for co-culturing of NPCs along with other cell types such as cardiac, vascular, and other cells during 3D bioprinting.
[Display omitted]
Neural tissue engineering; Biofabrication; Bioinks; Neural progenitor cells; Process optimization; Rheology; Scanning electron microscopy; Image analysis; Immunohistochemistry; Bioprinting.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>36636220</pmid><doi>10.1016/j.heliyon.2022.e12250</doi><orcidid>https://orcid.org/0000-0002-5152-9882</orcidid><orcidid>https://orcid.org/0000-0002-9157-3140</orcidid><orcidid>https://orcid.org/0000-0001-8890-7587</orcidid><orcidid>https://orcid.org/0000-0002-3776-0842</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2405-8440 |
ispartof | Heliyon, 2022-12, Vol.8 (12), p.e12250, Article e12250 |
issn | 2405-8440 2405-8440 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_e90eac908ddd4ff39519734a9a0076db |
source | PubMed Central Free; ScienceDirect - Connect here FIRST to enable access |
subjects | Biofabrication Bioinks Bioprinting Image analysis Immunohistochemistry Neural progenitor cells Neural tissue engineering Process optimization Rheology Scanning electron microscopy |
title | Development of an extrusion-based 3D-printing strategy for clustering of human neural progenitor cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A18%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20an%20extrusion-based%203D-printing%20strategy%20for%20clustering%20of%20human%20neural%20progenitor%20cells&rft.jtitle=Heliyon&rft.au=Bilkic,%20Ines&rft.date=2022-12-01&rft.volume=8&rft.issue=12&rft.spage=e12250&rft.pages=e12250-&rft.artnum=e12250&rft.issn=2405-8440&rft.eissn=2405-8440&rft_id=info:doi/10.1016/j.heliyon.2022.e12250&rft_dat=%3Cproquest_doaj_%3E2765775049%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c533t-59e07c9901940c74559eb603934f5b375b919ff4572cb0707b3748c1e4209b1a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2765775049&rft_id=info:pmid/36636220&rfr_iscdi=true |