Loading…

Development of an extrusion-based 3D-printing strategy for clustering of human neural progenitor cells

3D bioprinting offers a simplified solution for the engineering of complex tissue parts for in-vitro drug discovery or, in-vivo implantation. However, significant amount of challenges exist in 3D bioprinting of neural tissues, as these are sensitive cell types to handle via extrusion bioprinting tec...

Full description

Saved in:
Bibliographic Details
Published in:Heliyon 2022-12, Vol.8 (12), p.e12250, Article e12250
Main Authors: Bilkic, Ines, Sotelo, Diana, Anujarerat, Stephanie, Ortiz, Nickolas R., Alonzo, Matthew, El Khoury, Raven, Loyola, Carla C., Joddar, Binata
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c533t-59e07c9901940c74559eb603934f5b375b919ff4572cb0707b3748c1e4209b1a3
cites cdi_FETCH-LOGICAL-c533t-59e07c9901940c74559eb603934f5b375b919ff4572cb0707b3748c1e4209b1a3
container_end_page
container_issue 12
container_start_page e12250
container_title Heliyon
container_volume 8
creator Bilkic, Ines
Sotelo, Diana
Anujarerat, Stephanie
Ortiz, Nickolas R.
Alonzo, Matthew
El Khoury, Raven
Loyola, Carla C.
Joddar, Binata
description 3D bioprinting offers a simplified solution for the engineering of complex tissue parts for in-vitro drug discovery or, in-vivo implantation. However, significant amount of challenges exist in 3D bioprinting of neural tissues, as these are sensitive cell types to handle via extrusion bioprinting techniques. We assessed the feasibility of bioprinting human neural progenitor cells (NPCs) in 3D hydrogel lattices using a fibrinogen-alginate-chitosan bioink, previously optimized for neural-cell growth, and subsequently modified for structural support during extrusion printing, in this study. The original bioink used in this study was made by adding optimized amounts of high- and medium-viscosity alginate to the fibrinogen-chitosan-based bioink and making it extrudable under shear pressure. The mechanically robust 3D constructs promoted NPC cluster formation and maintained their morphology and viability during the entire culture period. This strategy may be useful for co-culturing of NPCs along with other cell types such as cardiac, vascular, and other cells during 3D bioprinting. [Display omitted] Neural tissue engineering; Biofabrication; Bioinks; Neural progenitor cells; Process optimization; Rheology; Scanning electron microscopy; Image analysis; Immunohistochemistry; Bioprinting.
doi_str_mv 10.1016/j.heliyon.2022.e12250
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e90eac908ddd4ff39519734a9a0076db</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2405844022035381</els_id><doaj_id>oai_doaj_org_article_e90eac908ddd4ff39519734a9a0076db</doaj_id><sourcerecordid>2765775049</sourcerecordid><originalsourceid>FETCH-LOGICAL-c533t-59e07c9901940c74559eb603934f5b375b919ff4572cb0707b3748c1e4209b1a3</originalsourceid><addsrcrecordid>eNqFUU1v1DAUjBCIVqU_AZQjlyzPX3F8AaGWj0qVuMDZcpyXrFdZe7GdVfff42WXqj1xsjWemfc8U1VvCawIkPbDZrXG2R2CX1GgdIWEUgEvqkvKQTQd5_Dyyf2iuk5pAwBEdK2S7HV1wdqWtZTCZTXe4h7nsNuiz3UYa-NrfMhxSS74pjcJh5rdNrvofHZ-qlOOJuN0qMcQazsvKWM84kW5XrZF7HGJZq53MUzoXT6ycJ7Tm-rVaOaE1-fzqvr19cvPm-_N_Y9vdzef7xsrGMuNUAjSKgVEcbCSiwL0LTDF-Ch6JkWviBpHLiS1PUiQBeOdJcgpqJ4YdlXdnXyHYDa6rL018aCDcfovEOKkTczOzqhRARqroBuGgY8jU4KUcLhRBkC2Q1-8Pp68dku_xcGWhMrXnpk-f_Furaew16pjQKQsBu_PBjH8XjBlvXXpGIfxGJakqWyFlAK4KlRxotoYUoo4Po4hoI-V640-V66PletT5UX37umOj6p_BRfCpxMBS-p7h1En69BbHFxEm0ss7j8j_gABTsE5</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2765775049</pqid></control><display><type>article</type><title>Development of an extrusion-based 3D-printing strategy for clustering of human neural progenitor cells</title><source>PubMed Central Free</source><source>ScienceDirect - Connect here FIRST to enable access</source><creator>Bilkic, Ines ; Sotelo, Diana ; Anujarerat, Stephanie ; Ortiz, Nickolas R. ; Alonzo, Matthew ; El Khoury, Raven ; Loyola, Carla C. ; Joddar, Binata</creator><creatorcontrib>Bilkic, Ines ; Sotelo, Diana ; Anujarerat, Stephanie ; Ortiz, Nickolas R. ; Alonzo, Matthew ; El Khoury, Raven ; Loyola, Carla C. ; Joddar, Binata</creatorcontrib><description>3D bioprinting offers a simplified solution for the engineering of complex tissue parts for in-vitro drug discovery or, in-vivo implantation. However, significant amount of challenges exist in 3D bioprinting of neural tissues, as these are sensitive cell types to handle via extrusion bioprinting techniques. We assessed the feasibility of bioprinting human neural progenitor cells (NPCs) in 3D hydrogel lattices using a fibrinogen-alginate-chitosan bioink, previously optimized for neural-cell growth, and subsequently modified for structural support during extrusion printing, in this study. The original bioink used in this study was made by adding optimized amounts of high- and medium-viscosity alginate to the fibrinogen-chitosan-based bioink and making it extrudable under shear pressure. The mechanically robust 3D constructs promoted NPC cluster formation and maintained their morphology and viability during the entire culture period. This strategy may be useful for co-culturing of NPCs along with other cell types such as cardiac, vascular, and other cells during 3D bioprinting. [Display omitted] Neural tissue engineering; Biofabrication; Bioinks; Neural progenitor cells; Process optimization; Rheology; Scanning electron microscopy; Image analysis; Immunohistochemistry; Bioprinting.</description><identifier>ISSN: 2405-8440</identifier><identifier>EISSN: 2405-8440</identifier><identifier>DOI: 10.1016/j.heliyon.2022.e12250</identifier><identifier>PMID: 36636220</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Biofabrication ; Bioinks ; Bioprinting ; Image analysis ; Immunohistochemistry ; Neural progenitor cells ; Neural tissue engineering ; Process optimization ; Rheology ; Scanning electron microscopy</subject><ispartof>Heliyon, 2022-12, Vol.8 (12), p.e12250, Article e12250</ispartof><rights>2022 The Author(s)</rights><rights>2022 The Author(s).</rights><rights>2022 The Author(s) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c533t-59e07c9901940c74559eb603934f5b375b919ff4572cb0707b3748c1e4209b1a3</citedby><cites>FETCH-LOGICAL-c533t-59e07c9901940c74559eb603934f5b375b919ff4572cb0707b3748c1e4209b1a3</cites><orcidid>0000-0002-5152-9882 ; 0000-0002-9157-3140 ; 0000-0001-8890-7587 ; 0000-0002-3776-0842</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9830177/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2405844022035381$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36636220$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bilkic, Ines</creatorcontrib><creatorcontrib>Sotelo, Diana</creatorcontrib><creatorcontrib>Anujarerat, Stephanie</creatorcontrib><creatorcontrib>Ortiz, Nickolas R.</creatorcontrib><creatorcontrib>Alonzo, Matthew</creatorcontrib><creatorcontrib>El Khoury, Raven</creatorcontrib><creatorcontrib>Loyola, Carla C.</creatorcontrib><creatorcontrib>Joddar, Binata</creatorcontrib><title>Development of an extrusion-based 3D-printing strategy for clustering of human neural progenitor cells</title><title>Heliyon</title><addtitle>Heliyon</addtitle><description>3D bioprinting offers a simplified solution for the engineering of complex tissue parts for in-vitro drug discovery or, in-vivo implantation. However, significant amount of challenges exist in 3D bioprinting of neural tissues, as these are sensitive cell types to handle via extrusion bioprinting techniques. We assessed the feasibility of bioprinting human neural progenitor cells (NPCs) in 3D hydrogel lattices using a fibrinogen-alginate-chitosan bioink, previously optimized for neural-cell growth, and subsequently modified for structural support during extrusion printing, in this study. The original bioink used in this study was made by adding optimized amounts of high- and medium-viscosity alginate to the fibrinogen-chitosan-based bioink and making it extrudable under shear pressure. The mechanically robust 3D constructs promoted NPC cluster formation and maintained their morphology and viability during the entire culture period. This strategy may be useful for co-culturing of NPCs along with other cell types such as cardiac, vascular, and other cells during 3D bioprinting. [Display omitted] Neural tissue engineering; Biofabrication; Bioinks; Neural progenitor cells; Process optimization; Rheology; Scanning electron microscopy; Image analysis; Immunohistochemistry; Bioprinting.</description><subject>Biofabrication</subject><subject>Bioinks</subject><subject>Bioprinting</subject><subject>Image analysis</subject><subject>Immunohistochemistry</subject><subject>Neural progenitor cells</subject><subject>Neural tissue engineering</subject><subject>Process optimization</subject><subject>Rheology</subject><subject>Scanning electron microscopy</subject><issn>2405-8440</issn><issn>2405-8440</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqFUU1v1DAUjBCIVqU_AZQjlyzPX3F8AaGWj0qVuMDZcpyXrFdZe7GdVfff42WXqj1xsjWemfc8U1VvCawIkPbDZrXG2R2CX1GgdIWEUgEvqkvKQTQd5_Dyyf2iuk5pAwBEdK2S7HV1wdqWtZTCZTXe4h7nsNuiz3UYa-NrfMhxSS74pjcJh5rdNrvofHZ-qlOOJuN0qMcQazsvKWM84kW5XrZF7HGJZq53MUzoXT6ycJ7Tm-rVaOaE1-fzqvr19cvPm-_N_Y9vdzef7xsrGMuNUAjSKgVEcbCSiwL0LTDF-Ch6JkWviBpHLiS1PUiQBeOdJcgpqJ4YdlXdnXyHYDa6rL018aCDcfovEOKkTczOzqhRARqroBuGgY8jU4KUcLhRBkC2Q1-8Pp68dku_xcGWhMrXnpk-f_Furaew16pjQKQsBu_PBjH8XjBlvXXpGIfxGJakqWyFlAK4KlRxotoYUoo4Po4hoI-V640-V66PletT5UX37umOj6p_BRfCpxMBS-p7h1En69BbHFxEm0ss7j8j_gABTsE5</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Bilkic, Ines</creator><creator>Sotelo, Diana</creator><creator>Anujarerat, Stephanie</creator><creator>Ortiz, Nickolas R.</creator><creator>Alonzo, Matthew</creator><creator>El Khoury, Raven</creator><creator>Loyola, Carla C.</creator><creator>Joddar, Binata</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5152-9882</orcidid><orcidid>https://orcid.org/0000-0002-9157-3140</orcidid><orcidid>https://orcid.org/0000-0001-8890-7587</orcidid><orcidid>https://orcid.org/0000-0002-3776-0842</orcidid></search><sort><creationdate>20221201</creationdate><title>Development of an extrusion-based 3D-printing strategy for clustering of human neural progenitor cells</title><author>Bilkic, Ines ; Sotelo, Diana ; Anujarerat, Stephanie ; Ortiz, Nickolas R. ; Alonzo, Matthew ; El Khoury, Raven ; Loyola, Carla C. ; Joddar, Binata</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c533t-59e07c9901940c74559eb603934f5b375b919ff4572cb0707b3748c1e4209b1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biofabrication</topic><topic>Bioinks</topic><topic>Bioprinting</topic><topic>Image analysis</topic><topic>Immunohistochemistry</topic><topic>Neural progenitor cells</topic><topic>Neural tissue engineering</topic><topic>Process optimization</topic><topic>Rheology</topic><topic>Scanning electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bilkic, Ines</creatorcontrib><creatorcontrib>Sotelo, Diana</creatorcontrib><creatorcontrib>Anujarerat, Stephanie</creatorcontrib><creatorcontrib>Ortiz, Nickolas R.</creatorcontrib><creatorcontrib>Alonzo, Matthew</creatorcontrib><creatorcontrib>El Khoury, Raven</creatorcontrib><creatorcontrib>Loyola, Carla C.</creatorcontrib><creatorcontrib>Joddar, Binata</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Heliyon</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bilkic, Ines</au><au>Sotelo, Diana</au><au>Anujarerat, Stephanie</au><au>Ortiz, Nickolas R.</au><au>Alonzo, Matthew</au><au>El Khoury, Raven</au><au>Loyola, Carla C.</au><au>Joddar, Binata</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of an extrusion-based 3D-printing strategy for clustering of human neural progenitor cells</atitle><jtitle>Heliyon</jtitle><addtitle>Heliyon</addtitle><date>2022-12-01</date><risdate>2022</risdate><volume>8</volume><issue>12</issue><spage>e12250</spage><pages>e12250-</pages><artnum>e12250</artnum><issn>2405-8440</issn><eissn>2405-8440</eissn><abstract>3D bioprinting offers a simplified solution for the engineering of complex tissue parts for in-vitro drug discovery or, in-vivo implantation. However, significant amount of challenges exist in 3D bioprinting of neural tissues, as these are sensitive cell types to handle via extrusion bioprinting techniques. We assessed the feasibility of bioprinting human neural progenitor cells (NPCs) in 3D hydrogel lattices using a fibrinogen-alginate-chitosan bioink, previously optimized for neural-cell growth, and subsequently modified for structural support during extrusion printing, in this study. The original bioink used in this study was made by adding optimized amounts of high- and medium-viscosity alginate to the fibrinogen-chitosan-based bioink and making it extrudable under shear pressure. The mechanically robust 3D constructs promoted NPC cluster formation and maintained their morphology and viability during the entire culture period. This strategy may be useful for co-culturing of NPCs along with other cell types such as cardiac, vascular, and other cells during 3D bioprinting. [Display omitted] Neural tissue engineering; Biofabrication; Bioinks; Neural progenitor cells; Process optimization; Rheology; Scanning electron microscopy; Image analysis; Immunohistochemistry; Bioprinting.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>36636220</pmid><doi>10.1016/j.heliyon.2022.e12250</doi><orcidid>https://orcid.org/0000-0002-5152-9882</orcidid><orcidid>https://orcid.org/0000-0002-9157-3140</orcidid><orcidid>https://orcid.org/0000-0001-8890-7587</orcidid><orcidid>https://orcid.org/0000-0002-3776-0842</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2405-8440
ispartof Heliyon, 2022-12, Vol.8 (12), p.e12250, Article e12250
issn 2405-8440
2405-8440
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_e90eac908ddd4ff39519734a9a0076db
source PubMed Central Free; ScienceDirect - Connect here FIRST to enable access
subjects Biofabrication
Bioinks
Bioprinting
Image analysis
Immunohistochemistry
Neural progenitor cells
Neural tissue engineering
Process optimization
Rheology
Scanning electron microscopy
title Development of an extrusion-based 3D-printing strategy for clustering of human neural progenitor cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A18%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20an%20extrusion-based%203D-printing%20strategy%20for%20clustering%20of%20human%20neural%20progenitor%20cells&rft.jtitle=Heliyon&rft.au=Bilkic,%20Ines&rft.date=2022-12-01&rft.volume=8&rft.issue=12&rft.spage=e12250&rft.pages=e12250-&rft.artnum=e12250&rft.issn=2405-8440&rft.eissn=2405-8440&rft_id=info:doi/10.1016/j.heliyon.2022.e12250&rft_dat=%3Cproquest_doaj_%3E2765775049%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c533t-59e07c9901940c74559eb603934f5b375b919ff4572cb0707b3748c1e4209b1a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2765775049&rft_id=info:pmid/36636220&rfr_iscdi=true