Loading…

Fluorinated Polyimide-Film Based Temperature and Humidity Sensor Utilizing Fiber Bragg Grating

We propose and demonstrate a temperature and humidity sensor based on a fluorinated polyimide film and fiber Bragg grating. Moisture-induced film expansion or contraction causes an extra strain, which is transferred to the fiber Bragg grating and leads to a humidity-dependent wavelength shift. The h...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2020-09, Vol.20 (19), p.5469
Main Authors: Xu, Xiuxiu, Luo, Mingming, Liu, Jianfei, Luan, Nannan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c446t-3badc66aff9cb7882b38ce9ae42883347f7d89ca01217390dc477add20c7a0243
cites cdi_FETCH-LOGICAL-c446t-3badc66aff9cb7882b38ce9ae42883347f7d89ca01217390dc477add20c7a0243
container_end_page
container_issue 19
container_start_page 5469
container_title Sensors (Basel, Switzerland)
container_volume 20
creator Xu, Xiuxiu
Luo, Mingming
Liu, Jianfei
Luan, Nannan
description We propose and demonstrate a temperature and humidity sensor based on a fluorinated polyimide film and fiber Bragg grating. Moisture-induced film expansion or contraction causes an extra strain, which is transferred to the fiber Bragg grating and leads to a humidity-dependent wavelength shift. The hydrophobic fluoride doping in the polyimide film helps to restrain its humidity hysteresis and provides a short moisture breathing time less than 2 min. Additionally, another cascaded fiber Bragg grating is used to exclude its thermal crosstalk, with a temperature accuracy of ±0.5 °C. Experimental monitoring over 9000 min revealed a considerable humidity accuracy better than ±3% relative humidity, due to the sensitized separate film-grating structure. The passive and electromagnetic immune sensor proved itself in field tests and could have sensing applications in the electro-sensitive storage of fuel, explosives, and chemicals.
doi_str_mv 10.3390/s20195469
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e9109abeb64a40ebbe737735f3471252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e9109abeb64a40ebbe737735f3471252</doaj_id><sourcerecordid>2550368974</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-3badc66aff9cb7882b38ce9ae42883347f7d89ca01217390dc477add20c7a0243</originalsourceid><addsrcrecordid>eNpdkkFv1DAQhSMEoqVw4B9Y4gKHgGM7sX1BohXbVqoEEu0Va2xPgldJvNhJpeXX43arinLy6Pn5m-fRVNXbhn7kXNNPmdFGt6LTz6rjRjBRK8bo83_qo-pVzltKGedcvayOONNKdh09rn5uxjWmMMOCnnyP4z5MwWO9CeNETiEX8RqnHSZY1oQEZk8u1uIIy578wDnHRG6WMIY_YR7IJlhM5DTBMJDz8qJor6sXPYwZ3zycJ9XN5uv12UV99e388uzLVe2E6JaaW_Cu66DvtbNSKWa5cqgBBVOKcyF76ZV2QBvWyPJj74SU4D2jTgJlgp9Ulweuj7A1uxQmSHsTIZh7IabBQFqCG9GgbqgGi7YTIChai5JLydu-tGlYywrr84G1W-2E3uG8JBifQJ_ezOGXGeKtka3iSusCeP8ASPH3inkxU8gOxxFmjGs2TAjJG8bvc7_7z7qNa5rLqAxrW8o7peWd68PB5VLMOWH_GKah5m4DzOMG8L-nwaF-</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550368974</pqid></control><display><type>article</type><title>Fluorinated Polyimide-Film Based Temperature and Humidity Sensor Utilizing Fiber Bragg Grating</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><creator>Xu, Xiuxiu ; Luo, Mingming ; Liu, Jianfei ; Luan, Nannan</creator><creatorcontrib>Xu, Xiuxiu ; Luo, Mingming ; Liu, Jianfei ; Luan, Nannan</creatorcontrib><description>We propose and demonstrate a temperature and humidity sensor based on a fluorinated polyimide film and fiber Bragg grating. Moisture-induced film expansion or contraction causes an extra strain, which is transferred to the fiber Bragg grating and leads to a humidity-dependent wavelength shift. The hydrophobic fluoride doping in the polyimide film helps to restrain its humidity hysteresis and provides a short moisture breathing time less than 2 min. Additionally, another cascaded fiber Bragg grating is used to exclude its thermal crosstalk, with a temperature accuracy of ±0.5 °C. Experimental monitoring over 9000 min revealed a considerable humidity accuracy better than ±3% relative humidity, due to the sensitized separate film-grating structure. The passive and electromagnetic immune sensor proved itself in field tests and could have sensing applications in the electro-sensitive storage of fuel, explosives, and chemicals.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s20195469</identifier><identifier>PMID: 32987660</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Bragg gratings ; Crosstalk ; Electromagnetism ; Explosives ; fiber Bragg grating ; Field tests ; fluorinated polyimide film ; Fluorination ; Humidity ; humidity hysteresis ; Letter ; Moisture ; Moisture absorption ; Molecular weight ; Relative humidity ; Sensors</subject><ispartof>Sensors (Basel, Switzerland), 2020-09, Vol.20 (19), p.5469</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-3badc66aff9cb7882b38ce9ae42883347f7d89ca01217390dc477add20c7a0243</citedby><cites>FETCH-LOGICAL-c446t-3badc66aff9cb7882b38ce9ae42883347f7d89ca01217390dc477add20c7a0243</cites><orcidid>0000-0003-3305-2707</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2550368974/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2550368974?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25751,27922,27923,37010,37011,44588,53789,53791,74896</link.rule.ids></links><search><creatorcontrib>Xu, Xiuxiu</creatorcontrib><creatorcontrib>Luo, Mingming</creatorcontrib><creatorcontrib>Liu, Jianfei</creatorcontrib><creatorcontrib>Luan, Nannan</creatorcontrib><title>Fluorinated Polyimide-Film Based Temperature and Humidity Sensor Utilizing Fiber Bragg Grating</title><title>Sensors (Basel, Switzerland)</title><description>We propose and demonstrate a temperature and humidity sensor based on a fluorinated polyimide film and fiber Bragg grating. Moisture-induced film expansion or contraction causes an extra strain, which is transferred to the fiber Bragg grating and leads to a humidity-dependent wavelength shift. The hydrophobic fluoride doping in the polyimide film helps to restrain its humidity hysteresis and provides a short moisture breathing time less than 2 min. Additionally, another cascaded fiber Bragg grating is used to exclude its thermal crosstalk, with a temperature accuracy of ±0.5 °C. Experimental monitoring over 9000 min revealed a considerable humidity accuracy better than ±3% relative humidity, due to the sensitized separate film-grating structure. The passive and electromagnetic immune sensor proved itself in field tests and could have sensing applications in the electro-sensitive storage of fuel, explosives, and chemicals.</description><subject>Accuracy</subject><subject>Bragg gratings</subject><subject>Crosstalk</subject><subject>Electromagnetism</subject><subject>Explosives</subject><subject>fiber Bragg grating</subject><subject>Field tests</subject><subject>fluorinated polyimide film</subject><subject>Fluorination</subject><subject>Humidity</subject><subject>humidity hysteresis</subject><subject>Letter</subject><subject>Moisture</subject><subject>Moisture absorption</subject><subject>Molecular weight</subject><subject>Relative humidity</subject><subject>Sensors</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkkFv1DAQhSMEoqVw4B9Y4gKHgGM7sX1BohXbVqoEEu0Va2xPgldJvNhJpeXX43arinLy6Pn5m-fRVNXbhn7kXNNPmdFGt6LTz6rjRjBRK8bo83_qo-pVzltKGedcvayOONNKdh09rn5uxjWmMMOCnnyP4z5MwWO9CeNETiEX8RqnHSZY1oQEZk8u1uIIy578wDnHRG6WMIY_YR7IJlhM5DTBMJDz8qJor6sXPYwZ3zycJ9XN5uv12UV99e388uzLVe2E6JaaW_Cu66DvtbNSKWa5cqgBBVOKcyF76ZV2QBvWyPJj74SU4D2jTgJlgp9Ulweuj7A1uxQmSHsTIZh7IabBQFqCG9GgbqgGi7YTIChai5JLydu-tGlYywrr84G1W-2E3uG8JBifQJ_ezOGXGeKtka3iSusCeP8ASPH3inkxU8gOxxFmjGs2TAjJG8bvc7_7z7qNa5rLqAxrW8o7peWd68PB5VLMOWH_GKah5m4DzOMG8L-nwaF-</recordid><startdate>20200924</startdate><enddate>20200924</enddate><creator>Xu, Xiuxiu</creator><creator>Luo, Mingming</creator><creator>Liu, Jianfei</creator><creator>Luan, Nannan</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3305-2707</orcidid></search><sort><creationdate>20200924</creationdate><title>Fluorinated Polyimide-Film Based Temperature and Humidity Sensor Utilizing Fiber Bragg Grating</title><author>Xu, Xiuxiu ; Luo, Mingming ; Liu, Jianfei ; Luan, Nannan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-3badc66aff9cb7882b38ce9ae42883347f7d89ca01217390dc477add20c7a0243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Bragg gratings</topic><topic>Crosstalk</topic><topic>Electromagnetism</topic><topic>Explosives</topic><topic>fiber Bragg grating</topic><topic>Field tests</topic><topic>fluorinated polyimide film</topic><topic>Fluorination</topic><topic>Humidity</topic><topic>humidity hysteresis</topic><topic>Letter</topic><topic>Moisture</topic><topic>Moisture absorption</topic><topic>Molecular weight</topic><topic>Relative humidity</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Xiuxiu</creatorcontrib><creatorcontrib>Luo, Mingming</creatorcontrib><creatorcontrib>Liu, Jianfei</creatorcontrib><creatorcontrib>Luan, Nannan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ: Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Xiuxiu</au><au>Luo, Mingming</au><au>Liu, Jianfei</au><au>Luan, Nannan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fluorinated Polyimide-Film Based Temperature and Humidity Sensor Utilizing Fiber Bragg Grating</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><date>2020-09-24</date><risdate>2020</risdate><volume>20</volume><issue>19</issue><spage>5469</spage><pages>5469-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>We propose and demonstrate a temperature and humidity sensor based on a fluorinated polyimide film and fiber Bragg grating. Moisture-induced film expansion or contraction causes an extra strain, which is transferred to the fiber Bragg grating and leads to a humidity-dependent wavelength shift. The hydrophobic fluoride doping in the polyimide film helps to restrain its humidity hysteresis and provides a short moisture breathing time less than 2 min. Additionally, another cascaded fiber Bragg grating is used to exclude its thermal crosstalk, with a temperature accuracy of ±0.5 °C. Experimental monitoring over 9000 min revealed a considerable humidity accuracy better than ±3% relative humidity, due to the sensitized separate film-grating structure. The passive and electromagnetic immune sensor proved itself in field tests and could have sensing applications in the electro-sensitive storage of fuel, explosives, and chemicals.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>32987660</pmid><doi>10.3390/s20195469</doi><orcidid>https://orcid.org/0000-0003-3305-2707</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2020-09, Vol.20 (19), p.5469
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_e9109abeb64a40ebbe737735f3471252
source PubMed (Medline); Publicly Available Content Database
subjects Accuracy
Bragg gratings
Crosstalk
Electromagnetism
Explosives
fiber Bragg grating
Field tests
fluorinated polyimide film
Fluorination
Humidity
humidity hysteresis
Letter
Moisture
Moisture absorption
Molecular weight
Relative humidity
Sensors
title Fluorinated Polyimide-Film Based Temperature and Humidity Sensor Utilizing Fiber Bragg Grating
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T20%3A32%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fluorinated%20Polyimide-Film%20Based%20Temperature%20and%20Humidity%20Sensor%20Utilizing%20Fiber%20Bragg%20Grating&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Xu,%20Xiuxiu&rft.date=2020-09-24&rft.volume=20&rft.issue=19&rft.spage=5469&rft.pages=5469-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s20195469&rft_dat=%3Cproquest_doaj_%3E2550368974%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c446t-3badc66aff9cb7882b38ce9ae42883347f7d89ca01217390dc477add20c7a0243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2550368974&rft_id=info:pmid/32987660&rfr_iscdi=true