Loading…
Fluorinated Polyimide-Film Based Temperature and Humidity Sensor Utilizing Fiber Bragg Grating
We propose and demonstrate a temperature and humidity sensor based on a fluorinated polyimide film and fiber Bragg grating. Moisture-induced film expansion or contraction causes an extra strain, which is transferred to the fiber Bragg grating and leads to a humidity-dependent wavelength shift. The h...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2020-09, Vol.20 (19), p.5469 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c446t-3badc66aff9cb7882b38ce9ae42883347f7d89ca01217390dc477add20c7a0243 |
---|---|
cites | cdi_FETCH-LOGICAL-c446t-3badc66aff9cb7882b38ce9ae42883347f7d89ca01217390dc477add20c7a0243 |
container_end_page | |
container_issue | 19 |
container_start_page | 5469 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 20 |
creator | Xu, Xiuxiu Luo, Mingming Liu, Jianfei Luan, Nannan |
description | We propose and demonstrate a temperature and humidity sensor based on a fluorinated polyimide film and fiber Bragg grating. Moisture-induced film expansion or contraction causes an extra strain, which is transferred to the fiber Bragg grating and leads to a humidity-dependent wavelength shift. The hydrophobic fluoride doping in the polyimide film helps to restrain its humidity hysteresis and provides a short moisture breathing time less than 2 min. Additionally, another cascaded fiber Bragg grating is used to exclude its thermal crosstalk, with a temperature accuracy of ±0.5 °C. Experimental monitoring over 9000 min revealed a considerable humidity accuracy better than ±3% relative humidity, due to the sensitized separate film-grating structure. The passive and electromagnetic immune sensor proved itself in field tests and could have sensing applications in the electro-sensitive storage of fuel, explosives, and chemicals. |
doi_str_mv | 10.3390/s20195469 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e9109abeb64a40ebbe737735f3471252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e9109abeb64a40ebbe737735f3471252</doaj_id><sourcerecordid>2550368974</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-3badc66aff9cb7882b38ce9ae42883347f7d89ca01217390dc477add20c7a0243</originalsourceid><addsrcrecordid>eNpdkkFv1DAQhSMEoqVw4B9Y4gKHgGM7sX1BohXbVqoEEu0Va2xPgldJvNhJpeXX43arinLy6Pn5m-fRVNXbhn7kXNNPmdFGt6LTz6rjRjBRK8bo83_qo-pVzltKGedcvayOONNKdh09rn5uxjWmMMOCnnyP4z5MwWO9CeNETiEX8RqnHSZY1oQEZk8u1uIIy578wDnHRG6WMIY_YR7IJlhM5DTBMJDz8qJor6sXPYwZ3zycJ9XN5uv12UV99e388uzLVe2E6JaaW_Cu66DvtbNSKWa5cqgBBVOKcyF76ZV2QBvWyPJj74SU4D2jTgJlgp9Ulweuj7A1uxQmSHsTIZh7IabBQFqCG9GgbqgGi7YTIChai5JLydu-tGlYywrr84G1W-2E3uG8JBifQJ_ezOGXGeKtka3iSusCeP8ASPH3inkxU8gOxxFmjGs2TAjJG8bvc7_7z7qNa5rLqAxrW8o7peWd68PB5VLMOWH_GKah5m4DzOMG8L-nwaF-</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550368974</pqid></control><display><type>article</type><title>Fluorinated Polyimide-Film Based Temperature and Humidity Sensor Utilizing Fiber Bragg Grating</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><creator>Xu, Xiuxiu ; Luo, Mingming ; Liu, Jianfei ; Luan, Nannan</creator><creatorcontrib>Xu, Xiuxiu ; Luo, Mingming ; Liu, Jianfei ; Luan, Nannan</creatorcontrib><description>We propose and demonstrate a temperature and humidity sensor based on a fluorinated polyimide film and fiber Bragg grating. Moisture-induced film expansion or contraction causes an extra strain, which is transferred to the fiber Bragg grating and leads to a humidity-dependent wavelength shift. The hydrophobic fluoride doping in the polyimide film helps to restrain its humidity hysteresis and provides a short moisture breathing time less than 2 min. Additionally, another cascaded fiber Bragg grating is used to exclude its thermal crosstalk, with a temperature accuracy of ±0.5 °C. Experimental monitoring over 9000 min revealed a considerable humidity accuracy better than ±3% relative humidity, due to the sensitized separate film-grating structure. The passive and electromagnetic immune sensor proved itself in field tests and could have sensing applications in the electro-sensitive storage of fuel, explosives, and chemicals.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s20195469</identifier><identifier>PMID: 32987660</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Bragg gratings ; Crosstalk ; Electromagnetism ; Explosives ; fiber Bragg grating ; Field tests ; fluorinated polyimide film ; Fluorination ; Humidity ; humidity hysteresis ; Letter ; Moisture ; Moisture absorption ; Molecular weight ; Relative humidity ; Sensors</subject><ispartof>Sensors (Basel, Switzerland), 2020-09, Vol.20 (19), p.5469</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-3badc66aff9cb7882b38ce9ae42883347f7d89ca01217390dc477add20c7a0243</citedby><cites>FETCH-LOGICAL-c446t-3badc66aff9cb7882b38ce9ae42883347f7d89ca01217390dc477add20c7a0243</cites><orcidid>0000-0003-3305-2707</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2550368974/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2550368974?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25751,27922,27923,37010,37011,44588,53789,53791,74896</link.rule.ids></links><search><creatorcontrib>Xu, Xiuxiu</creatorcontrib><creatorcontrib>Luo, Mingming</creatorcontrib><creatorcontrib>Liu, Jianfei</creatorcontrib><creatorcontrib>Luan, Nannan</creatorcontrib><title>Fluorinated Polyimide-Film Based Temperature and Humidity Sensor Utilizing Fiber Bragg Grating</title><title>Sensors (Basel, Switzerland)</title><description>We propose and demonstrate a temperature and humidity sensor based on a fluorinated polyimide film and fiber Bragg grating. Moisture-induced film expansion or contraction causes an extra strain, which is transferred to the fiber Bragg grating and leads to a humidity-dependent wavelength shift. The hydrophobic fluoride doping in the polyimide film helps to restrain its humidity hysteresis and provides a short moisture breathing time less than 2 min. Additionally, another cascaded fiber Bragg grating is used to exclude its thermal crosstalk, with a temperature accuracy of ±0.5 °C. Experimental monitoring over 9000 min revealed a considerable humidity accuracy better than ±3% relative humidity, due to the sensitized separate film-grating structure. The passive and electromagnetic immune sensor proved itself in field tests and could have sensing applications in the electro-sensitive storage of fuel, explosives, and chemicals.</description><subject>Accuracy</subject><subject>Bragg gratings</subject><subject>Crosstalk</subject><subject>Electromagnetism</subject><subject>Explosives</subject><subject>fiber Bragg grating</subject><subject>Field tests</subject><subject>fluorinated polyimide film</subject><subject>Fluorination</subject><subject>Humidity</subject><subject>humidity hysteresis</subject><subject>Letter</subject><subject>Moisture</subject><subject>Moisture absorption</subject><subject>Molecular weight</subject><subject>Relative humidity</subject><subject>Sensors</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkkFv1DAQhSMEoqVw4B9Y4gKHgGM7sX1BohXbVqoEEu0Va2xPgldJvNhJpeXX43arinLy6Pn5m-fRVNXbhn7kXNNPmdFGt6LTz6rjRjBRK8bo83_qo-pVzltKGedcvayOONNKdh09rn5uxjWmMMOCnnyP4z5MwWO9CeNETiEX8RqnHSZY1oQEZk8u1uIIy578wDnHRG6WMIY_YR7IJlhM5DTBMJDz8qJor6sXPYwZ3zycJ9XN5uv12UV99e388uzLVe2E6JaaW_Cu66DvtbNSKWa5cqgBBVOKcyF76ZV2QBvWyPJj74SU4D2jTgJlgp9Ulweuj7A1uxQmSHsTIZh7IabBQFqCG9GgbqgGi7YTIChai5JLydu-tGlYywrr84G1W-2E3uG8JBifQJ_ezOGXGeKtka3iSusCeP8ASPH3inkxU8gOxxFmjGs2TAjJG8bvc7_7z7qNa5rLqAxrW8o7peWd68PB5VLMOWH_GKah5m4DzOMG8L-nwaF-</recordid><startdate>20200924</startdate><enddate>20200924</enddate><creator>Xu, Xiuxiu</creator><creator>Luo, Mingming</creator><creator>Liu, Jianfei</creator><creator>Luan, Nannan</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3305-2707</orcidid></search><sort><creationdate>20200924</creationdate><title>Fluorinated Polyimide-Film Based Temperature and Humidity Sensor Utilizing Fiber Bragg Grating</title><author>Xu, Xiuxiu ; Luo, Mingming ; Liu, Jianfei ; Luan, Nannan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-3badc66aff9cb7882b38ce9ae42883347f7d89ca01217390dc477add20c7a0243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Bragg gratings</topic><topic>Crosstalk</topic><topic>Electromagnetism</topic><topic>Explosives</topic><topic>fiber Bragg grating</topic><topic>Field tests</topic><topic>fluorinated polyimide film</topic><topic>Fluorination</topic><topic>Humidity</topic><topic>humidity hysteresis</topic><topic>Letter</topic><topic>Moisture</topic><topic>Moisture absorption</topic><topic>Molecular weight</topic><topic>Relative humidity</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Xiuxiu</creatorcontrib><creatorcontrib>Luo, Mingming</creatorcontrib><creatorcontrib>Liu, Jianfei</creatorcontrib><creatorcontrib>Luan, Nannan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ: Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Xiuxiu</au><au>Luo, Mingming</au><au>Liu, Jianfei</au><au>Luan, Nannan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fluorinated Polyimide-Film Based Temperature and Humidity Sensor Utilizing Fiber Bragg Grating</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><date>2020-09-24</date><risdate>2020</risdate><volume>20</volume><issue>19</issue><spage>5469</spage><pages>5469-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>We propose and demonstrate a temperature and humidity sensor based on a fluorinated polyimide film and fiber Bragg grating. Moisture-induced film expansion or contraction causes an extra strain, which is transferred to the fiber Bragg grating and leads to a humidity-dependent wavelength shift. The hydrophobic fluoride doping in the polyimide film helps to restrain its humidity hysteresis and provides a short moisture breathing time less than 2 min. Additionally, another cascaded fiber Bragg grating is used to exclude its thermal crosstalk, with a temperature accuracy of ±0.5 °C. Experimental monitoring over 9000 min revealed a considerable humidity accuracy better than ±3% relative humidity, due to the sensitized separate film-grating structure. The passive and electromagnetic immune sensor proved itself in field tests and could have sensing applications in the electro-sensitive storage of fuel, explosives, and chemicals.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>32987660</pmid><doi>10.3390/s20195469</doi><orcidid>https://orcid.org/0000-0003-3305-2707</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2020-09, Vol.20 (19), p.5469 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_e9109abeb64a40ebbe737735f3471252 |
source | PubMed (Medline); Publicly Available Content Database |
subjects | Accuracy Bragg gratings Crosstalk Electromagnetism Explosives fiber Bragg grating Field tests fluorinated polyimide film Fluorination Humidity humidity hysteresis Letter Moisture Moisture absorption Molecular weight Relative humidity Sensors |
title | Fluorinated Polyimide-Film Based Temperature and Humidity Sensor Utilizing Fiber Bragg Grating |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T20%3A32%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fluorinated%20Polyimide-Film%20Based%20Temperature%20and%20Humidity%20Sensor%20Utilizing%20Fiber%20Bragg%20Grating&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Xu,%20Xiuxiu&rft.date=2020-09-24&rft.volume=20&rft.issue=19&rft.spage=5469&rft.pages=5469-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s20195469&rft_dat=%3Cproquest_doaj_%3E2550368974%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c446t-3badc66aff9cb7882b38ce9ae42883347f7d89ca01217390dc477add20c7a0243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2550368974&rft_id=info:pmid/32987660&rfr_iscdi=true |