Loading…

Incremental supply of fat, lactose, or protein influences the diurnal pattern of heat production and substrate oxidation in preweaning calves

The list of standard abbreviations for JDS is available at adsa.org/jds-abbreviations-24. Nonstandard abbreviations are available in the Notes. Increasing nutrient supply to dairy calves has well known benefits; however, the effects of milk replacer (MR) composition when supplied in higher amounts a...

Full description

Saved in:
Bibliographic Details
Published in:Journal of dairy science 2024-09, Vol.107 (9), p.6866-6877
Main Authors: Amado, L., Leal, L.N., Berends, H., van Keulen, P., Martín-Tereso, J., Gerrits, W.J.J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The list of standard abbreviations for JDS is available at adsa.org/jds-abbreviations-24. Nonstandard abbreviations are available in the Notes. Increasing nutrient supply to dairy calves has well known benefits; however, the effects of milk replacer (MR) composition when supplied in higher amounts are not fully understood, particularly in the first weeks of life. To better understand the metabolism of macronutrient supply in young calves (21 d old), we investigated diurnal patterns of heat production and substrate oxidation in young calves fed MR with an incremental supply of fat, lactose, or protein. Thirty-two groups of 3 mixed-sex Holstein-Friesian newborn calves (3.4 ± 1.6 d of age), were randomly assigned to one of 4 dietary treatments and studied for 21 d. Diets consisted of a basal MR (23.3% CP, 21.2% EE, and 48.8% lactose of DM) fed at 550 kJ/kg BW0.85 per day (CON; n = 24), or the basal MR incrementally supplied with 126 kJ of digestible energy/BW0.85 per day as milk fat (+FAT; n = 23), lactose (+LAC; n = 24), or milk protein (+PRO; n = 23). Calves were fed MR in 2 daily meals and had ad libitum access to water, but were not supplied with any calf starter nor forage. After 2 weeks of adaptation to the diets, groups of 3 calves were placed for 1 wk in an open-circuit respiration chamber for nitrogen and energy balance measurements (lasting 7 d). On d 3, glucose oxidation kinetics was estimated by using [U-13C]glucose. Measurements included total heat production (total energy [HP], activity [Hact] expenditure, resting metabolic rate [RMR]), respiration quotient (RQ), carbohydrate (COX) and fat oxidation (FOX) in 10 min. intervals and averaging these values per hour over days. Incremental supply of lactose and fat increased body fat deposition, with observed patterns in RMR indicating that this increase occurred primarily after the meals. Specifically, the average daily RMR was highest in the +PRO group and lowest in the CON treatment. The HP was higher in the +PRO group and throughout the day, hourly means of HP were higher in this treatment mainly caused by an increase in Hact. The recovery of 13CO2 from oral pulse-dosed [U-13C]glucose was high (77%), and not significantly different between treatments, indicating that ingested lactose was oxidized to a similar extent across treatments. Increasing lactose supply in young calves increased fat retention by reduction in fatty oxidation. Calves fed a MR with additional protein or fat raised RMR persiste
ISSN:0022-0302
1525-3198
1525-3198
DOI:10.3168/jds.2023-24532