Loading…

Modeling the spatiotemporal variability in subsurface thermal regimes across a low-relief polygonal tundra landscape

Vast carbon stocks stored in permafrost soils of Arctic tundra are under risk of release to the atmosphere under warming climate scenarios. Ice-wedge polygons in the low-gradient polygonal tundra create a complex mosaic of microtopographic features. This microtopography plays a critical role in regu...

Full description

Saved in:
Bibliographic Details
Published in:The cryosphere 2016-09, Vol.10 (5), p.2241-2274
Main Authors: Kumar, Jitendra, Collier, Nathan, Bisht, Gautam, Mills, Richard T, Thornton, Peter E, Iversen, Colleen M, Romanovsky, Vladimir
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a621t-e9f86a9d4c9a50014aa510374c67506d574fd74d1b84631f5febcc02338d01fb3
cites cdi_FETCH-LOGICAL-a621t-e9f86a9d4c9a50014aa510374c67506d574fd74d1b84631f5febcc02338d01fb3
container_end_page 2274
container_issue 5
container_start_page 2241
container_title The cryosphere
container_volume 10
creator Kumar, Jitendra
Collier, Nathan
Bisht, Gautam
Mills, Richard T
Thornton, Peter E
Iversen, Colleen M
Romanovsky, Vladimir
description Vast carbon stocks stored in permafrost soils of Arctic tundra are under risk of release to the atmosphere under warming climate scenarios. Ice-wedge polygons in the low-gradient polygonal tundra create a complex mosaic of microtopographic features. This microtopography plays a critical role in regulating the fine-scale variability in thermal and hydrological regimes in the polygonal tundra landscape underlain by continuous permafrost. Modeling of thermal regimes of this sensitive ecosystem is essential for understanding the landscape behavior under the current as well as changing climate. We present here an end-to-end effort for high-resolution numerical modeling of thermal hydrology at real-world field sites, utilizing the best available data to characterize and parameterize the models. We develop approaches to model the thermal hydrology of polygonal tundra and apply them at four study sites near Barrow, Alaska, spanning across low to transitional to high-centered polygons, representing a broad polygonal tundra landscape. A multiphase subsurface thermal hydrology model (PFLOTRAN) was developed and applied to study the thermal regimes at four sites. Using a high-resolution lidar digital elevation model (DEM), microtopographic features of the landscape were characterized and represented in the high-resolution model mesh. The best available soil data from field observations and literature were utilized to represent the complex heterogeneous subsurface in the numerical model. Simulation results demonstrate the ability of the developed modeling approach to capture – without recourse to model calibration – several aspects of the complex thermal regimes across the sites, and provide insights into the critical role of polygonal tundra microtopography in regulating the thermal dynamics of the carbon-rich permafrost soils. Areas of significant disagreement between model results and observations highlight the importance of field-based observations of soil thermal and hydraulic properties for modeling-based studies of permafrost thermal dynamics, and provide motivation and guidance for future observations that will help address model and data gaps affecting our current understanding of the system.
doi_str_mv 10.5194/tc-10-2241-2016
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e924c026bde842e783cd0c61e0940818</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A481415086</galeid><doaj_id>oai_doaj_org_article_e924c026bde842e783cd0c61e0940818</doaj_id><sourcerecordid>A481415086</sourcerecordid><originalsourceid>FETCH-LOGICAL-a621t-e9f86a9d4c9a50014aa510374c67506d574fd74d1b84631f5febcc02338d01fb3</originalsourceid><addsrcrecordid>eNp9ks-L1TAQx4souK6evRY9eehukqZtclwWdR-sCP44h2ky6ebRNjVJ1fffm-5b1AciOcww-cyXLzNTFC8puWio5JdJV5RUjHFaMULbR8UZlZJXhDP--K_8afEsxj0hLZOEnxXpgzc4unko0x2WcYHkfMJp8QHG8jsEB70bXTqUbi7j2sc1WNC4wWHKRMDBTRhL0MHHHMrR_6hCFkRbLn48DH7OVFpnE_IfzCZqWPB58cTCGPHFQzwvvr57--X6prr9-H53fXVbQctoqlBa0YI0XEtoCKEcoKGk7rhuu4a0pum4NR03tBe8raltLPZaE1bXwhBq-_q82B11jYe9WoKbIByUB6fuCz4MCkJyekSFkvHc2vYGBWfYiVoboluKRHIiqMhar45aPianonYJ9Z3284w6KVqzrpFdhl4foSX4byvGpPZ-DXkEUeW98KZmkpH_UVRk9zURnP-hBsj-3Gx9CqAnF7W64oJy2hDRZuriH1R-BieX7aF1uX7S8OakITMJf6YB1hjV7vOnU_byyN5vN6D9PUNK1HZ0Kukt3Y5ObUdX_wJXlMc0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1823330844</pqid></control><display><type>article</type><title>Modeling the spatiotemporal variability in subsurface thermal regimes across a low-relief polygonal tundra landscape</title><source>Publicly Available Content Database</source><creator>Kumar, Jitendra ; Collier, Nathan ; Bisht, Gautam ; Mills, Richard T ; Thornton, Peter E ; Iversen, Colleen M ; Romanovsky, Vladimir</creator><creatorcontrib>Kumar, Jitendra ; Collier, Nathan ; Bisht, Gautam ; Mills, Richard T ; Thornton, Peter E ; Iversen, Colleen M ; Romanovsky, Vladimir ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><description>Vast carbon stocks stored in permafrost soils of Arctic tundra are under risk of release to the atmosphere under warming climate scenarios. Ice-wedge polygons in the low-gradient polygonal tundra create a complex mosaic of microtopographic features. This microtopography plays a critical role in regulating the fine-scale variability in thermal and hydrological regimes in the polygonal tundra landscape underlain by continuous permafrost. Modeling of thermal regimes of this sensitive ecosystem is essential for understanding the landscape behavior under the current as well as changing climate. We present here an end-to-end effort for high-resolution numerical modeling of thermal hydrology at real-world field sites, utilizing the best available data to characterize and parameterize the models. We develop approaches to model the thermal hydrology of polygonal tundra and apply them at four study sites near Barrow, Alaska, spanning across low to transitional to high-centered polygons, representing a broad polygonal tundra landscape. A multiphase subsurface thermal hydrology model (PFLOTRAN) was developed and applied to study the thermal regimes at four sites. Using a high-resolution lidar digital elevation model (DEM), microtopographic features of the landscape were characterized and represented in the high-resolution model mesh. The best available soil data from field observations and literature were utilized to represent the complex heterogeneous subsurface in the numerical model. Simulation results demonstrate the ability of the developed modeling approach to capture – without recourse to model calibration – several aspects of the complex thermal regimes across the sites, and provide insights into the critical role of polygonal tundra microtopography in regulating the thermal dynamics of the carbon-rich permafrost soils. Areas of significant disagreement between model results and observations highlight the importance of field-based observations of soil thermal and hydraulic properties for modeling-based studies of permafrost thermal dynamics, and provide motivation and guidance for future observations that will help address model and data gaps affecting our current understanding of the system.</description><identifier>ISSN: 1994-0424</identifier><identifier>ISSN: 1994-0416</identifier><identifier>EISSN: 1994-0424</identifier><identifier>EISSN: 1994-0416</identifier><identifier>DOI: 10.5194/tc-10-2241-2016</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Analysis ; Atmospheric models ; Calibration ; Carbon ; Climate ; Climate change ; Climate models ; Computer simulation ; Cryosphere ; Digital Elevation Models ; Dynamics ; Ecosystems ; Environmental changes ; ENVIRONMENTAL SCIENCES ; Finite element method ; Geomorphology ; Global warming ; High resolution ; Hydraulic properties ; Hydraulics ; Hydrologic data ; Hydrologic models ; Hydrologic regime ; Hydrology ; Ice ; Lakes ; Lidar ; Mathematical models ; Microtopography ; modeling ; Modelling ; Motivation ; Numerical models ; Permafrost ; Permafrost soils ; PFLOTRAN ; Polar environments ; Polygons ; Precipitation ; Resolution ; Sea level ; Soil ; Soil carbon ; Soil dynamics ; Soil properties ; Soils ; Stocks ; Taiga &amp; tundra ; Topography ; Tundra ; Tundra ecology ; Tundras ; Variability ; Vegetation ; Wetlands</subject><ispartof>The cryosphere, 2016-09, Vol.10 (5), p.2241-2274</ispartof><rights>COPYRIGHT 2016 Copernicus GmbH</rights><rights>Copyright Copernicus GmbH 2016</rights><rights>2016. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a621t-e9f86a9d4c9a50014aa510374c67506d574fd74d1b84631f5febcc02338d01fb3</citedby><cites>FETCH-LOGICAL-a621t-e9f86a9d4c9a50014aa510374c67506d574fd74d1b84631f5febcc02338d01fb3</cites><orcidid>0000-0002-9515-2087 ; 0000-0002-0159-0546 ; 0000-0001-6641-7595 ; 0000-0002-4759-5158</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2414532920/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2414532920?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25751,27922,27923,37010,44588,74896</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1327597$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumar, Jitendra</creatorcontrib><creatorcontrib>Collier, Nathan</creatorcontrib><creatorcontrib>Bisht, Gautam</creatorcontrib><creatorcontrib>Mills, Richard T</creatorcontrib><creatorcontrib>Thornton, Peter E</creatorcontrib><creatorcontrib>Iversen, Colleen M</creatorcontrib><creatorcontrib>Romanovsky, Vladimir</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><title>Modeling the spatiotemporal variability in subsurface thermal regimes across a low-relief polygonal tundra landscape</title><title>The cryosphere</title><description>Vast carbon stocks stored in permafrost soils of Arctic tundra are under risk of release to the atmosphere under warming climate scenarios. Ice-wedge polygons in the low-gradient polygonal tundra create a complex mosaic of microtopographic features. This microtopography plays a critical role in regulating the fine-scale variability in thermal and hydrological regimes in the polygonal tundra landscape underlain by continuous permafrost. Modeling of thermal regimes of this sensitive ecosystem is essential for understanding the landscape behavior under the current as well as changing climate. We present here an end-to-end effort for high-resolution numerical modeling of thermal hydrology at real-world field sites, utilizing the best available data to characterize and parameterize the models. We develop approaches to model the thermal hydrology of polygonal tundra and apply them at four study sites near Barrow, Alaska, spanning across low to transitional to high-centered polygons, representing a broad polygonal tundra landscape. A multiphase subsurface thermal hydrology model (PFLOTRAN) was developed and applied to study the thermal regimes at four sites. Using a high-resolution lidar digital elevation model (DEM), microtopographic features of the landscape were characterized and represented in the high-resolution model mesh. The best available soil data from field observations and literature were utilized to represent the complex heterogeneous subsurface in the numerical model. Simulation results demonstrate the ability of the developed modeling approach to capture – without recourse to model calibration – several aspects of the complex thermal regimes across the sites, and provide insights into the critical role of polygonal tundra microtopography in regulating the thermal dynamics of the carbon-rich permafrost soils. Areas of significant disagreement between model results and observations highlight the importance of field-based observations of soil thermal and hydraulic properties for modeling-based studies of permafrost thermal dynamics, and provide motivation and guidance for future observations that will help address model and data gaps affecting our current understanding of the system.</description><subject>Analysis</subject><subject>Atmospheric models</subject><subject>Calibration</subject><subject>Carbon</subject><subject>Climate</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Computer simulation</subject><subject>Cryosphere</subject><subject>Digital Elevation Models</subject><subject>Dynamics</subject><subject>Ecosystems</subject><subject>Environmental changes</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Finite element method</subject><subject>Geomorphology</subject><subject>Global warming</subject><subject>High resolution</subject><subject>Hydraulic properties</subject><subject>Hydraulics</subject><subject>Hydrologic data</subject><subject>Hydrologic models</subject><subject>Hydrologic regime</subject><subject>Hydrology</subject><subject>Ice</subject><subject>Lakes</subject><subject>Lidar</subject><subject>Mathematical models</subject><subject>Microtopography</subject><subject>modeling</subject><subject>Modelling</subject><subject>Motivation</subject><subject>Numerical models</subject><subject>Permafrost</subject><subject>Permafrost soils</subject><subject>PFLOTRAN</subject><subject>Polar environments</subject><subject>Polygons</subject><subject>Precipitation</subject><subject>Resolution</subject><subject>Sea level</subject><subject>Soil</subject><subject>Soil carbon</subject><subject>Soil dynamics</subject><subject>Soil properties</subject><subject>Soils</subject><subject>Stocks</subject><subject>Taiga &amp; tundra</subject><subject>Topography</subject><subject>Tundra</subject><subject>Tundra ecology</subject><subject>Tundras</subject><subject>Variability</subject><subject>Vegetation</subject><subject>Wetlands</subject><issn>1994-0424</issn><issn>1994-0416</issn><issn>1994-0424</issn><issn>1994-0416</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks-L1TAQx4souK6evRY9eehukqZtclwWdR-sCP44h2ky6ebRNjVJ1fffm-5b1AciOcww-cyXLzNTFC8puWio5JdJV5RUjHFaMULbR8UZlZJXhDP--K_8afEsxj0hLZOEnxXpgzc4unko0x2WcYHkfMJp8QHG8jsEB70bXTqUbi7j2sc1WNC4wWHKRMDBTRhL0MHHHMrR_6hCFkRbLn48DH7OVFpnE_IfzCZqWPB58cTCGPHFQzwvvr57--X6prr9-H53fXVbQctoqlBa0YI0XEtoCKEcoKGk7rhuu4a0pum4NR03tBe8raltLPZaE1bXwhBq-_q82B11jYe9WoKbIByUB6fuCz4MCkJyekSFkvHc2vYGBWfYiVoboluKRHIiqMhar45aPianonYJ9Z3284w6KVqzrpFdhl4foSX4byvGpPZ-DXkEUeW98KZmkpH_UVRk9zURnP-hBsj-3Gx9CqAnF7W64oJy2hDRZuriH1R-BieX7aF1uX7S8OakITMJf6YB1hjV7vOnU_byyN5vN6D9PUNK1HZ0Kukt3Y5ObUdX_wJXlMc0</recordid><startdate>20160927</startdate><enddate>20160927</enddate><creator>Kumar, Jitendra</creator><creator>Collier, Nathan</creator><creator>Bisht, Gautam</creator><creator>Mills, Richard T</creator><creator>Thornton, Peter E</creator><creator>Iversen, Colleen M</creator><creator>Romanovsky, Vladimir</creator><general>Copernicus GmbH</general><general>European Geosciences Union</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H95</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9515-2087</orcidid><orcidid>https://orcid.org/0000-0002-0159-0546</orcidid><orcidid>https://orcid.org/0000-0001-6641-7595</orcidid><orcidid>https://orcid.org/0000-0002-4759-5158</orcidid></search><sort><creationdate>20160927</creationdate><title>Modeling the spatiotemporal variability in subsurface thermal regimes across a low-relief polygonal tundra landscape</title><author>Kumar, Jitendra ; Collier, Nathan ; Bisht, Gautam ; Mills, Richard T ; Thornton, Peter E ; Iversen, Colleen M ; Romanovsky, Vladimir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a621t-e9f86a9d4c9a50014aa510374c67506d574fd74d1b84631f5febcc02338d01fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Analysis</topic><topic>Atmospheric models</topic><topic>Calibration</topic><topic>Carbon</topic><topic>Climate</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Computer simulation</topic><topic>Cryosphere</topic><topic>Digital Elevation Models</topic><topic>Dynamics</topic><topic>Ecosystems</topic><topic>Environmental changes</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Finite element method</topic><topic>Geomorphology</topic><topic>Global warming</topic><topic>High resolution</topic><topic>Hydraulic properties</topic><topic>Hydraulics</topic><topic>Hydrologic data</topic><topic>Hydrologic models</topic><topic>Hydrologic regime</topic><topic>Hydrology</topic><topic>Ice</topic><topic>Lakes</topic><topic>Lidar</topic><topic>Mathematical models</topic><topic>Microtopography</topic><topic>modeling</topic><topic>Modelling</topic><topic>Motivation</topic><topic>Numerical models</topic><topic>Permafrost</topic><topic>Permafrost soils</topic><topic>PFLOTRAN</topic><topic>Polar environments</topic><topic>Polygons</topic><topic>Precipitation</topic><topic>Resolution</topic><topic>Sea level</topic><topic>Soil</topic><topic>Soil carbon</topic><topic>Soil dynamics</topic><topic>Soil properties</topic><topic>Soils</topic><topic>Stocks</topic><topic>Taiga &amp; tundra</topic><topic>Topography</topic><topic>Tundra</topic><topic>Tundra ecology</topic><topic>Tundras</topic><topic>Variability</topic><topic>Vegetation</topic><topic>Wetlands</topic><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Jitendra</creatorcontrib><creatorcontrib>Collier, Nathan</creatorcontrib><creatorcontrib>Bisht, Gautam</creatorcontrib><creatorcontrib>Mills, Richard T</creatorcontrib><creatorcontrib>Thornton, Peter E</creatorcontrib><creatorcontrib>Iversen, Colleen M</creatorcontrib><creatorcontrib>Romanovsky, Vladimir</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>Directory of Open Access Journals</collection><jtitle>The cryosphere</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Jitendra</au><au>Collier, Nathan</au><au>Bisht, Gautam</au><au>Mills, Richard T</au><au>Thornton, Peter E</au><au>Iversen, Colleen M</au><au>Romanovsky, Vladimir</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling the spatiotemporal variability in subsurface thermal regimes across a low-relief polygonal tundra landscape</atitle><jtitle>The cryosphere</jtitle><date>2016-09-27</date><risdate>2016</risdate><volume>10</volume><issue>5</issue><spage>2241</spage><epage>2274</epage><pages>2241-2274</pages><issn>1994-0424</issn><issn>1994-0416</issn><eissn>1994-0424</eissn><eissn>1994-0416</eissn><abstract>Vast carbon stocks stored in permafrost soils of Arctic tundra are under risk of release to the atmosphere under warming climate scenarios. Ice-wedge polygons in the low-gradient polygonal tundra create a complex mosaic of microtopographic features. This microtopography plays a critical role in regulating the fine-scale variability in thermal and hydrological regimes in the polygonal tundra landscape underlain by continuous permafrost. Modeling of thermal regimes of this sensitive ecosystem is essential for understanding the landscape behavior under the current as well as changing climate. We present here an end-to-end effort for high-resolution numerical modeling of thermal hydrology at real-world field sites, utilizing the best available data to characterize and parameterize the models. We develop approaches to model the thermal hydrology of polygonal tundra and apply them at four study sites near Barrow, Alaska, spanning across low to transitional to high-centered polygons, representing a broad polygonal tundra landscape. A multiphase subsurface thermal hydrology model (PFLOTRAN) was developed and applied to study the thermal regimes at four sites. Using a high-resolution lidar digital elevation model (DEM), microtopographic features of the landscape were characterized and represented in the high-resolution model mesh. The best available soil data from field observations and literature were utilized to represent the complex heterogeneous subsurface in the numerical model. Simulation results demonstrate the ability of the developed modeling approach to capture – without recourse to model calibration – several aspects of the complex thermal regimes across the sites, and provide insights into the critical role of polygonal tundra microtopography in regulating the thermal dynamics of the carbon-rich permafrost soils. Areas of significant disagreement between model results and observations highlight the importance of field-based observations of soil thermal and hydraulic properties for modeling-based studies of permafrost thermal dynamics, and provide motivation and guidance for future observations that will help address model and data gaps affecting our current understanding of the system.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/tc-10-2241-2016</doi><tpages>34</tpages><orcidid>https://orcid.org/0000-0002-9515-2087</orcidid><orcidid>https://orcid.org/0000-0002-0159-0546</orcidid><orcidid>https://orcid.org/0000-0001-6641-7595</orcidid><orcidid>https://orcid.org/0000-0002-4759-5158</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1994-0424
ispartof The cryosphere, 2016-09, Vol.10 (5), p.2241-2274
issn 1994-0424
1994-0416
1994-0424
1994-0416
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_e924c026bde842e783cd0c61e0940818
source Publicly Available Content Database
subjects Analysis
Atmospheric models
Calibration
Carbon
Climate
Climate change
Climate models
Computer simulation
Cryosphere
Digital Elevation Models
Dynamics
Ecosystems
Environmental changes
ENVIRONMENTAL SCIENCES
Finite element method
Geomorphology
Global warming
High resolution
Hydraulic properties
Hydraulics
Hydrologic data
Hydrologic models
Hydrologic regime
Hydrology
Ice
Lakes
Lidar
Mathematical models
Microtopography
modeling
Modelling
Motivation
Numerical models
Permafrost
Permafrost soils
PFLOTRAN
Polar environments
Polygons
Precipitation
Resolution
Sea level
Soil
Soil carbon
Soil dynamics
Soil properties
Soils
Stocks
Taiga & tundra
Topography
Tundra
Tundra ecology
Tundras
Variability
Vegetation
Wetlands
title Modeling the spatiotemporal variability in subsurface thermal regimes across a low-relief polygonal tundra landscape
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T06%3A58%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20the%20spatiotemporal%20variability%20in%20subsurface%20thermal%20regimes%20across%20a%20low-relief%20polygonal%20tundra%20landscape&rft.jtitle=The%20cryosphere&rft.au=Kumar,%20Jitendra&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States).%20Oak%20Ridge%20Leadership%20Computing%20Facility%20(OLCF)&rft.date=2016-09-27&rft.volume=10&rft.issue=5&rft.spage=2241&rft.epage=2274&rft.pages=2241-2274&rft.issn=1994-0424&rft.eissn=1994-0424&rft_id=info:doi/10.5194/tc-10-2241-2016&rft_dat=%3Cgale_doaj_%3EA481415086%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a621t-e9f86a9d4c9a50014aa510374c67506d574fd74d1b84631f5febcc02338d01fb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1823330844&rft_id=info:pmid/&rft_galeid=A481415086&rfr_iscdi=true