Loading…
Reactor Design and Thermal Performance Analysis for Solar Thermal Energy Storage Application
Solar energy is a sustainable and low-cost renewable energy of enormous importance, especially at this time where non-renewable energy sources are unsustainable and costly. However, improving the thermal performance of a solar energy storage reactor poses some challenges. In this study, the location...
Saved in:
Published in: | Energies (Basel) 2020-06, Vol.13 (12), p.3186 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Solar energy is a sustainable and low-cost renewable energy of enormous importance, especially at this time where non-renewable energy sources are unsustainable and costly. However, improving the thermal performance of a solar energy storage reactor poses some challenges. In this study, the location of fluid inlets and outlets in the given reactor design and its impact on the thermal performance were investigated. A P1 approximation radiation model coupled with shallow channel approximation of fluid flow was developed. By taking the frustum base as a reference, four fluid inlets along the edges of the frustum and two outlet locations at the base and side of the reactor were computed. Inlets located 4.81 cm from the base of the frustum and an outlet located at the side of the reactor were found to have a better thermal performance with a short conveyer energy flow system. It was also deduced that radiation applied at the edges of the frustum had better thermal performance than that applied at a quartz edge. Furthermore, increasing the laminar inflow rate from 0.36 (L/h) to 3.6 (L/h) increased the temperature distribution in the reactor. This study provides noteworthy insights of relevance to the power engineering industry and academia. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en13123186 |