Loading…

Synthesis of vinyl ester resin-carrying PVDF green nanofibers for self-healing applications

Self-healing on the engineering applications is smart, decisive research for prolonging the life span of the materials and the innovations have been mounting still smarter. Connecting to advancements in self-healing carriers, in altering the chemical structure by optimizing the brittleness for self-...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2021-01, Vol.11 (1), p.908-908, Article 908
Main Authors: Naga Kumar, C., Prabhakar, M. N., Song, Jung-il
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Self-healing on the engineering applications is smart, decisive research for prolonging the life span of the materials and the innovations have been mounting still smarter. Connecting to advancements in self-healing carriers, in altering the chemical structure by optimizing the brittleness for self-healing performance and introducing the bio-degradability, for the first time TPS was blended to PVDF for the synthesis of nanofibers, as carriers of a vinyl ester (VE) resin (medication), by the coaxial electrospinning technique. TPS was mechanically mixed with PVDF base polymer and optimized the TPS content (10 wt%) based on mechanical performance. The novel nanofibers were characterized via field emission scanning electron microscopy (FESEM), Fourier-transform infrared spectroscopy, X-ray diffraction, thermal, moisture analysis, and a mechanical line with FESEM and energy-dispersive X-ray analysis studied the self-healing. The TPS/PVDF fibers having hydrogen bonding and increased the crystallinity (40.57 → 44.12%) and the diameter (115 → 184 nm) along with the surface roughness of the fibers with increasing the TPS content. Microanalysis presented the flow-out of the VE resin at the scratched parts in the pierced fibers; interestingly, after some time, the etched part was cured automatically by the curing of the spread resin. Mechanical stretching of the nanofibers in the tensile tests up in the plastic region showed a decrement in the elasticity (TPS/PVDF fibers) and an increment in the brittle nature (cured VE resin) with the increase in Young’s modulus at each stretching, clearly elucidating the healing performance.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-020-78706-3