Loading…

Effect of Grain Size and Micromorphology of Cu Foil on the Velocity of Flyer of Exploding Foil Detonator

In this paper, the effect of grain size and micromorphology of Cu foil on the velocity of the flyer of an exploding foil detonator was studied. A Cu foil with different grain sizes and micromorphologies was prepared by the physical vapor deposition sputtering method. The flyer velocity of the Cu foi...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2021-07, Vol.11 (14), p.6598
Main Authors: Han, Kehua, Deng, Peng, Chu, Enyi, Jiao, Qingjie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, the effect of grain size and micromorphology of Cu foil on the velocity of the flyer of an exploding foil detonator was studied. A Cu foil with different grain sizes and micromorphologies was prepared by the physical vapor deposition sputtering method. The flyer velocity of the Cu foil was measured by the photon Doppler technique (PDT). The influence of the grain size and micromorphology of the Cu foil (which was the core transducer of the exploding foil detonator) on the flyer velocity and reacted morphology was discussed. The results show that the grain size and micromorphology of the Cu film can greatly affect the velocity and morphology of the flyer. The grain size of the Cu film is more uniform, and the stimulus response in the middle area of the bridge foil is more concentrated. In addition, the current density becomes more uniform, resulting in a better explosion performance. Consequently, the speed of the formed flyer becomes higher, leading to a smoother flyer surface, which is more conductive to energy conversion.
ISSN:2076-3417
2076-3417
DOI:10.3390/app11146598